Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study compared drop size distribution (DSD) measurements on the surface, the corresponding properties, and the precipitation modes among three deep convective regions within the Americas. The measurement compilation corresponded to two sites in the midlatitudes: the U.S. Southern Great Plains and Córdoba Province in subtropical South America, as well as to one site in the tropics: Manacapuru in central Amazonia; these are all areas where intense rain-producing systems contribute to the majority of rainfall in the Americas’ largest river basins. This compilation included two types of disdrometers (Parsivel and 2D-Video Disdrometer) that were used at the midlatitude sites and one type of disdrometer (Parsivel) that was deployed at the tropical site. The distributions of physical parameters (such as rain rate R, mass-weighted mean diameter Dm, and normalized droplet concentration Nw) for the raindrop spectra without rainfall mode classification seemed similar, except for the much broader Nw distributions in Córdoba. The raindrop spectra were then classified into a light precipitation mode and a precipitation mode by using a cutoff at 0.5 mm h−1 based on previous studies that characterized the full drop size spectra. These segregated rain modes are potentially unique relative to previously studied terrain-influenced sites. In the light precipitation and precipitation modes, the dominant higher frequency observed in a broad distribution of Nw in both types of disdrometers and the identification of shallow light precipitation in vertically pointing cloud radar data represent unique characteristics of the Córdoba site relative to the others. As a result, the co-variability between the physical parameters of the DSD indicates that the precipitation observed in Córdoba may confound existing methods of determining the rain type by using the drop size distribution.more » « less
-
null (Ed.)Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.more » « less