skip to main content


Search for: All records

Creators/Authors contains: "Hardisty, Dalton S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Superoxide is a reactive oxygen species that is influential in the redox chemistry of a wide range of biological processes and environmental cycles. Using a novel in situ sensor we report the first water column profiles of superoxide in the Baltic Sea, at concentrations higher than previously observed in other oceans. Our data revealed consistent peaks of superoxide (2.0–15.1 nM) in dark waters just below the mixed layer. The oxic waters, low metal concentrations, and lack of sunlight imply that the peak is likely of biological origin. Several profiles displayed a concomitant dip in dissolved oxygen mirroring this superoxide peak, strongly suggesting a link between the two features. The magnitude and distribution of superoxide observed warrants re‐evaluation of the most relevant sources and controls of superoxide in seawater. Locally, these high concentrations of superoxide may create environments conducive to reactions with trace metals and organic matter and present an overlooked sink of oxygen in the Baltic Sea.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Abstract

    Iodine cycling in the ocean is closely linked to productivity, organic carbon export, and oxygenation. However, iodine sources and sinks at the seafloor are poorly constrained, which limits the applicability of iodine as a biogeochemical tracer. We present pore water and solid phase iodine data for sediment cores from the Peruvian continental margin, which cover a range of bottom water oxygen concentrations, organic carbon rain rates and sedimentation rates. By applying a numerical reaction‐transport model, we evaluate how these parameters determine benthic iodine fluxes and sedimentary iodine‐to‐organic carbon ratios (I:Corg) in the paleo‐record. Iodine is delivered to the sediment with organic material and released into the pore water as iodide (I) during early diagenesis. Under anoxic conditions in the bottom water, most of the iodine delivered is recycled, which can explain the presence of excess dissolved iodine in near‐shore anoxic seawater. According to our model, the benthic Iefflux in anoxic areas is mainly determined by the organic carbon rain rate. Under oxic conditions, pore water dissolved Iis oxidized and precipitated at the sediment surface. Much of the precipitated iodine re‐dissolves during early diagenesis and only a fraction is buried. Particulate iodine burial efficiency and I:Corgburial ratios do increase with bottom water oxygen. However, multiple combinations of bottom water oxygen, organic carbon rain rate and sedimentation rate can lead to identical I:Corg, which limits the utility of I:Corgas a quantitative oxygenation proxy. Our findings may help to better constrain the ocean's iodine mass balance, both today and in the geological past.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract. Iodine (I) abundance in marine carbonates (measured as an elemental ratio with calcium, I / Ca) is of broad interest as a proxy for local/regional ocean redox. This connection arises because the speciation of iodine in seawater, the balance between iodate (IO3-) and iodide (I−), is sensitive to the prevalence of oxic vs. anoxic conditions. However, although I / Ca ratios are increasingly commonly being measured in ancient carbonate samples, a fully quantitative interpretation of this proxy requires the availability of a mechanistic interpretative framework for the marine iodine cycle that can account for the extent and intensity of ocean deoxygenation in the past. Here we present and evaluate a representation of marine iodine cycling embedded in an Earth system model (“cGENIE”) against both modern and paleo-observations. In this framework, we account for IO3- uptake and release of I− through the biological pump, the reduction in ambient IO3- to I− in the water column, and the re-oxidation of I− to IO3-. We develop and test a variety of different plausible mechanisms for iodine reduction and oxidation transformation and contrast model projections against an updated compilation of observed dissolved IO3- and I− concentrations in the present-day ocean. By optimizing the parameters controlling previously proposed mechanisms involved in marine iodine cycling, we find that we can obtain broad matches to observed iodine speciation gradients in zonal surface distribution, depth profiles, and oxygen-deficient zones (ODZs). However, we also identify alternative, equally well performing mechanisms which assume a more explicit mechanistic link between iodine transformation and environment – an ambiguity that highlights the need for more process-based studies on modern marine iodine cycling. Finally, to help distinguish between competing representations of the marine iodine cycle and because our ultimate motivation is to further our ability to reconstruct ocean oxygenation in the geological past, we conducted “plausibility tests” of different model schemes against available I / Ca measurements made on Cretaceous carbonates – a time of substantially depleted ocean oxygen availability compared to modern and hence a strong test of our model. Overall, the simultaneous broad match we can achieve between modeled iodine speciation and modern observations, and between forward proxy modeled I / Ca and geological elemental ratios, supports the application of our Earth system modeling in simulating the marine iodine cycle to help interpret and constrain the redox evolution of past oceans.

     
    more » « less
  4. The distribution of iodine in the surface ocean – of which iodide-iodine is a large destructor of tropospheric ozone (O3) – can be attributed to bothin situ(i.e., biological) andex situ(i.e., mixing) drivers. Currently, uncertainty regarding the rates and mechanisms of iodide (I-) oxidation render it difficult to distinguish the importance ofin situreactions vsex situmixing in driving iodine’s distribution, thus leading to uncertainty in climatological ozone atmospheric models. It has been hypothesized that reactive oxygen species (ROS), such as superoxide (O2•−) or hydrogen peroxide (H2O2), may be needed for I-oxidation to occur at the sea surface, but this has yet to be demonstrated in natural marine waters. To test the role of ROS in iodine redox transformations, shipboard isotope tracer incubations were conducted as part of the Bermuda Atlantic Time Series (BATS) in the Sargasso Sea in September of 2018. Incubation trials evaluated the effects of ROS (O2•−, H2O2) on iodine redox transformations over time and at euphotic and sub-photic depths. Rates of I-oxidation were assessed using a129I-tracer (t1/2~15.7 Myr) added to all incubations, and129I/127I ratios of individual iodine species (I-, IO3-). Our results show a lack of I-oxidation to IO3-within the resolution of our tracer approach – i.e., <2.99 nM/day, or <1091.4 nM/yr. In addition, we present new ROS data from BATS and compare our iodine speciation profiles to that from two previous studies conducted at BATS, which demonstrate long-term iodine stability. These results indicate thatex situprocesses, such as vertical mixing, may play an important role in broader iodine species’ distribution in this and similar regions.

     
    more » « less
  5. The distribution of dissolved iodine in seawater is sensitive to multiple biogeochemical cycles, including those of nitrogen and oxygen. The iodine-to-calcium ratio (I/Ca) of marine carbonates, such as bulk carbonate or foraminifera, has emerged as a potential proxy for changes in past seawater oxygenation. However, the utility of the I/Ca proxy in deep-sea corals, natural archives of seawater chemistry with wide spatial coverage and radiometric dating potential, remains unexplored. Here, we present the first I/Ca data obtained from modern deep-sea corals, specifically scleractinian and bamboo corals, collected from the Atlantic, Eastern Pacific, and Southern Oceans, encompassing a wide range of seawater oxygen concentrations (10–280 μmol/kg). In contrast to thermodynamic predictions, we observe higher I/Ca ratios in aragonitic corals (scleractinian) compared to calcitic corals (bamboo). This observation suggests a strong biological control during iodate incorporation into deep-sea coral skeletons. For the majority of scleractinian corals, I/Ca exhibits a covariation with local seawater iodate concentrations, which is closely related to seawater oxygen content. Scleractinian corals also exhibit notably lower I/Ca below a seawater oxygen threshold of approximately 160 μmol/kg. In contrast, no significant differences in I/Ca are found among bamboo corals across the range of oxygen concentrations encountered (15–240 μmol/kg). In the North Atlantic, several hydrographic factors, such as temperature and/or salinity, may additionally affect coral I/Ca. Our results highlight the potential of I/Ca ratios in deep-sea scleractinian corals to serve as an indicator of past seawater iodate concentrations, providing valuable insights into historical seawater oxygen levels.

     
    more » « less
  6. null (Ed.)
    Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill. 
    more » « less
  7. Abstract

    The distributions of iodate and iodide were measured along the GEOTRACES GP15 meridional transect at 152°W from the shelf of Alaska to Papeete, Tahiti. The transect included oxygenated waters near the shelf of Alaska, the full water column in the central basin in the North Pacific Basin, the upper water column spanning across seasonally mixed regimes in the north, oligotrophic regimes in the central gyre, and the equatorial upwelling. Iodide concentrations are highest in the permanently stratified tropical mixed layers, which reflect accumulation due to light‐dependent biological processes, and decline rapidly below the euphotic zone. Vertical mixing coefficients (Kz), derived from complementary7Be data, enabled iodide oxidation rates to be estimated at two stations. Iodide half‐lives of 3–4 years show the importance of seasonal mixing processes in explaining north‐south differences in the transect, and also contribute to the decrease in iodide concentrations with depth below the mixed layer. These estimated half‐lives are consistent with a recent global iodine model. No evidence was found for significant inputs of iodine from the Alaskan continental margin, but there is a significant enrichment of iodide in bottom waters overlying deep sea sediments from the interior of the basin.

     
    more » « less
  8. Abstract

    The distributions of iodate (IO3), iodide (I), nitrite (NO2), and oxygen (O2) were determined on two zonal transects and one meridional transect in the Eastern Tropical North Pacific (ETNP) in 2018. Iodine is a useful tracer of in situ redox transformations and inputs within the water column from continental margins. In oxygenated waters, iodine is predominantly present as oxidized iodate. In the oxygen deficient zone (ODZ) in the ETNP, a substantial fraction is reduced to iodide, with the highest iodide concentrations coincident with the secondary nitrite maxima. These features resemble ODZs in the Arabian Sea and Eastern Tropical South Pacific (ETSP). Maxima in iodide and nitrite were associated with a specific water mass, referred to as the 13 °C Water, the same water mass that contains the highest concentrations of iodide within the ETSP. Physical processes leading to patchiness in the 13 °C Water relative to other water masses could account for the patchiness frequently observed in iodide and nitrite, probably reflecting subsurface mesoscale features such as eddies. Throughout much of the ETNP ODZ, iodine concentrations were higher than the mean oceanic value. This “excess iodine” is attributed to lateral inputs from sedimentary margins. Excess iodine maxima are centered within a potential density of 26.2–26.6 kg/m3, a density range that intersects with reducing shelf sediments and is almost identical to the ETSP. Evidently, margin input processes are significant throughout the basin and can influence the nitrogen and iron cycles as well, as in the ETSP.

     
    more » « less