Across herbivorous insect clades, species richness and host-use diversity tend to positively covary. This could be because host-use divergence drives speciation, or because it raises the ecological limits on species richness. To evaluate these hypotheses, we performed phylogenetic path model analyses of the species diversity of Nearctic aphids. Here, we show that variation in the species richness of aphid clades is caused mainly by host-use divergence, whereas variation in speciation rates is caused more by divergence in non-host-related niche variables. Aphid speciation is affected by both the evolution of host and non-host-related niche components, but the former is largely caused by the latter. Thus, our analyses suggest that host-use divergence can both raise the ecological limits on species richness and drive speciation, although in the latter case, host-use divergence tends to be a step along the causal path leading from non-host-related niche evolution to speciation.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
null (Ed.)Half a million species of herbivorous insects have been described. Most of them are diet specialists, using only a few plant species as hosts. Biologists suspect that their specificity is key to their diversity. But why do herbivorous insects tend to be diet specialists? In this review, we catalog a broad range of explanations. We review the evidence for each and suggest lines of research to obtain the evidence we lack. We then draw attention to a second major question, namely how changes in diet breadth affect the rest of a species’ biology. In particular, we know little about how changes in diet breadth feed back on genetic architecture, the population genetic environment, and other aspects of a species’ ecology. Knowing more about how generalists and specialists differ should go a long way toward sorting out potential explanations of specificity, and yield a deeper understanding of herbivorous insect diversity.more » « less
-
Abstract Pesticides and parasites have each been linked to increased mortality in western honey bees (
Apis mellifera ). Currently, it is uncertain if one makes the other worse; several studies have tested for potential synergistic stressor effects, but results have been mixed.Here, we use a hierarchical meta‐analysis of 63 experiments from 26 studies to gain a clearer view of the combined effects of parasites and pesticides on honey bee health.
We found that combined pesticide–parasite treatments do tend to be deadlier than uncombined treatments but are significantly less deadly than predicted additive or multiplicative effects. In other words, combined treatment effects are not synergistic, but antagonistic.
Much of the previous uncertainty about the combined effects of pesticides and parasites on honey bee health can be attributed to a bias in the previous research against stressor antagonism; many researchers have excluded the possibility of antagonism a priori.
Synthesis and applications . Meta‐analysis shows that when honey bees are stressed by a combination of pesticides and parasites, the combined stress effect is antagonistic, that is, less than the sum of its parts. A better understanding of the mechanisms underlying this antagonism could prove critical for effective management of honey bee health. -
Abstract Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade‐offs on alternative host plants, yet the evidence of such trade‐offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population‐genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more‐specialized species occur on fewer of their potential hosts than do less‐specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more‐specialized species do not appear to outperform more generalist species.
-
Abstract When herbivorous insects interact, they can increase or decrease each other's fitness. As it stands, we know little of what causes this variation. Classic competition theory predicts that competition will increase with niche overlap and population density. And classic hypotheses of herbivorous insect diversification predict that diet specialists will be superior competitors to generalists. Here, we test these predictions using phylogenetic meta‐analysis. We estimate the effects of diet breadth, population density and proxies of niche overlap: phylogenetic relatedness, physical proximity and feeding‐guild membership. As predicted, we find that competition between herbivorous insects increases with population density as well as phylogenetic and physical proximity. Contrary to predictions, competition tends to be stronger between than within feeding guilds and affects specialists as much as generalists. This is the first statistical evidence that niche overlap increases competition between herbivorous insects. However, niche overlap is not everything; complex feeding guild effects indicate important indirect interactions.
-
Abstract Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
-
Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.