skip to main content

Search for: All records

Creators/Authors contains: "Harel-Canada, Fabrice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The vast majority of text transformation techniques in NLP are inherently limited in their ability to expand input space coverage due to an implicit constraint to preserve the original class label. In this work, we propose the notion of sibylvariance (SIB) to describe the broader set of transforms that relax the label-preserving constraint, knowably vary the expected class, and lead to significantly more diverse input distributions. We offer a unified framework to organize all data transformations, including two types of SIB: (1) Transmutations convert one discrete kind into another, (2) Mixture Mutations blend two or more classes together. To explore the role of sibylvariance within NLP, we implemented 41 text transformations, including several novel techniques like Concept2Sentence and SentMix. Sibylvariance also enables a unique form of adaptive training that generates new input mixtures for the most confused class pairs, challenging the learner to differentiate with greater nuance. Our experiments on six benchmark datasets strongly support the efficacy of sibylvariance for generalization performance, defect detection, and adversarial robustness. 
    more » « less
  2. null (Ed.)
    Recent effort to test deep learning systems has produced an intuitive and compelling test criterion called neuron coverage (NC), which resembles the notion of traditional code coverage. NC measures the proportion of neurons activated in a neural network and it is implicitly assumed that increasing NC improves the quality of a test suite. In an attempt to automatically generate a test suite that increases NC, we design a novel diversity promoting regularizer that can be plugged into existing adversarial attack algorithms. We then assess whether such attempts to increase NC could generate a test suite that (1) detects adversarial attacks successfully, (2) produces natural inputs, and (3) is unbiased to particular class predictions. Contrary to expectation, our extensive evaluation finds that increasing NC actually makes it harder to generate an effective test suite: higher neuron coverage leads to fewer defects detected, less natural inputs, and more biased prediction preferences. Our results invoke skepticism that increasing neuron coverage may not be a meaningful objective for generating tests for deep neural networks and call for a new test generation technique that considers defect detection, naturalness, and output impartiality in tandem. 
    more » « less