skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harkness, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantum Key Distribution allows two parties to establish a secret key that is secure against computationally unbounded adversaries. To extend the distance between parties, quantum networks are vital. Typically, security in such scenarios assumes the absolute worst case: namely, an adversary has complete control over all repeaters and fiber links in a network and is able to replace them with perfect devices, thus allowing her to hide her attack within the expected natural noise. In a large-scale network, however, such a powerful attack may be infeasible. In this paper, we analyze the case where the adversary can only corrupt a subset of the repeater network connecting Alice and Bob, while some portion of the network near Alice and Bob may be considered safe from attack (though still noisy). We derive a rigorous finite key proof of security assuming this attack model, and show that improved performance and noise tolerances are possible. Our proof methods may be useful to other researchers investigating partially corrupted quantum networks, and our main result may be beneficial to future network operators. 
    more » « less
    Free, publicly-accessible full text available October 14, 2025