skip to main content

Search for: All records

Creators/Authors contains: "Harmer, Colin P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Here we show the effect of Li chemical pressure on the structure of layered polymorphs with LiNiB composition: RT -LiNiB (room temperature polymorph) and HT -LiNiB (high temperature polymorph), resulting in stabilization of the novel RT -Li 1+x NiB ( x ∼ 0.17) and HT -Li 1+y NiB ( y ∼ 0.06) phases. Depending on the synthesis temperature and initial Li content, precisely controlled via hydride route synthesis, [NiB] layers undergo structural deformations, allowing for extra Li atoms to be accommodated between the layers. In situ variable temperature synchrotron and time-dependent laboratory powder X-ray diffraction studies suggest Li step-wise deintercalation processes: RT- Li 1+x NiB → RT- LiNiB (high temp.) → LiNi 3 B 1.8 → binary Ni borides and HT -Li 1+y NiB → HT -LiNiB (high temp.) → LiNi 3 B 1.8 → binary Ni borides. Quantum chemistry calculations and solid state 7 Li and 11 B NMR spectroscopy shed light on the complexity of real superstructures of these compounds determined from high resolution synchrotron powder diffraction data. 
    more » « less