skip to main content

Search for: All records

Creators/Authors contains: "Harrington, Walter N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Highly pathogenic avian influenza A(H5N1) viruses of clade underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.

    more » « less
  2. Abstract

    Photoswitchable fluorescent proteins (PFPs) that can change fluorescence color upon excitation have revolutionized many applications of light such as tracking protein movement, super-resolution imaging, identification of circulating cells, and optical data storage. Nevertheless, the relatively weak fluorescence of PFPs limits their applications in biomedical imaging due to strong tissue autofluorecence background. Conversely, plasmonic nanolasers, also called spasers, have demonstrated potential to generate super-bright stimulated emissions even inside single cells. Nevertheless, the development of photoswitchable spasers that can shift their stimulated emission color in response to light is challenging. Here, we introduce the novel concept of spasers using a PFP layer as the active medium surrounding a plasmonic core. The proof of principle was demonstrated by synthesizing a multilayer nanostructure on the surface of a spherical gold core, with a non-absorbing thin polymer shell and the PFP Dendra2 dispersed in the matrix of a biodegradable polymer. We have demonstrated photoswitching of spontaneous and stimulated emission in these spasers below and above the spasing threshold, respectively, at different spectral ranges. The plasmonic core of the spasers serves also as a photothermal (and potentially photoacoustic) contrast agent, allowing for photothermal imaging of the spasers. These results suggest that multimodal photoswitchable spasers could extend the traditional applications of spasers and PFPs in laser spectroscopy, multicolor cytometry, and theranostics with the potential to track, identify, and kill abnormal cells in circulation.

    more » « less
  3. Abstract

    Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using anin vivoflow cytometry platform for real‐time, noninvasive, label‐free, and quantitative monitoring of the lifespan of green fluorescent protein‐expressingStaphylococcus aureusandPseudomonas aeruginosain a murine model. We report a relatively fast average rate of clearance forS. aureus(k= 0.37 ± 0.09 min−1, half‐life ~1.9 min) and a slower rate forP. aeruginosa(k= 0.07 ± 0.02 min−1, half‐life ~9.6 min). We also observed what appears to be two stages of clearance forS. aureus, whileP. aeruginosaappeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry

    more » « less