Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Elkins, Christopher A. (Ed.)ABSTRACT Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hostsmore »Free, publicly-accessible full text available July 26, 2023
-
Effective mosquito surveillance and control relies on rapid and accurate identification of mosquito vectors and confounding sympatric species. As adoption of modified mosquito (MM) control techniques has increased, the value of monitoring the success of interventions has gained recognition and has pushed the field away from traditional ‘spray and pray’ approaches. Field evaluation and monitoring of MM control techniques that target specific species require massive volumes of surveillance data involving species-level identifications. However, traditional surveillance methods remain time and labor-intensive, requiring highly trained, experienced personnel. Health districts often lack the resources needed to collect essential data, and conventional entomological species identification involves a significant learning curve to produce consistent high accuracy data. These needs led us to develop MosID: a device that allows for high-accuracy mosquito species identification to enhance capability and capacity of mosquito surveillance programs. The device features high-resolution optics and enables batch image capture and species identification of mosquito specimens using computer vision. While development is ongoing, we share an update on key metrics of the MosID system. The identification algorithm, tested internally across 16 species, achieved 98.4 ± 0.6% % macro F1-score on a dataset of known species, unknown species used in training, and species reservedmore »
-
In September 2018, Hurricane Florence caused extreme flooding in eastern North Carolina, USA, a region highly dense in concentrated animal production, especially swine and poultry. In this study, floodwater samples (n=96) were collected as promptly post-hurricane as possible and for up to approx. 30 days, and selectively enriched for Campylobacter using Bolton broth enrichment and isolation on mCCDA microaerobically at 42°C. Only one sample yielded Campylobacter , which was found to be Campylobacter jejuni with the novel genotype ST-2866. However, the methods employed to isolate Campylobacter readily yielded Arcobacter from 73.5% of the floodwater samples. The Arcobacter isolates failed to grow on Mueller-Hinton agar at 25, 30, 37 or 42°C microaerobically or aerobically, but could be readily subcultured on mCCDA at 42°C microaerobically. Multilocus sequence typing of 112 isolates indicated that all were Arcobacter butzleri. The majority (85.7%) of the isolates exhibited novel sequence types (STs), with 66 novel STs identified. Several STs, including certain novel ones, were detected in diverse waterbody types (channel, isolated ephemeral pools, floodplain) and from multiple watersheds, suggesting the potential for regionally-dominant strains. The genotypes were clearly partitioned into two major clades, one with high representation of human and ruminant isolates and another with anmore »
-
First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Ourmore »