- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01000010000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Harris, Devin K (2)
-
Ampofo, Kwame (1)
-
Bairaktarova, Diana (1)
-
Cetin, Mecit (1)
-
Goodall, Jonathan L (1)
-
Huang, Guoping (1)
-
Iftekharuddin, Khan (1)
-
Salahshour, Behrouz (1)
-
Shen, Yawen (1)
-
Tahvildari, Navid (1)
-
Wang, Yidi (1)
-
Yehia, Ayatollah S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In traditional mechanics-oriented classes, experience and the literature have shown that students are often challenged with conceptualizing complex three-dimensional behavior. Within the context of structural engineering and mechanics, the challenges manifest in scenarios related to linking this three-dimensional behavior with member response such as elastic buckling of columns and critical locations for shear and moment. While solutions such as props and videos have been used as examples in the past with some success, these tools do not spatially represent complex structural behaviors and are also limited to one-way interaction where the learner receives the information but cannot interact with the tools. This project leverages mobile augmented reality (AR) designed to help students visualize complex behaviors (deformation, strain, and stress) structural components with various loading and boundary conditions. The tool, STRUCT-AR utilizes finite element models pre-loaded into a mobile AR application that allows users to interact and engage with the models on their mobile device or tablet. Our vision of this technology is to provide a complementary teaching tool for enhancing personalized learning wherein students can leverage the technology as a learning companion both within the classroom and outside to better understand structural behaviors and mechanisms that are challenging to convey in a traditional 2D learning environment. This study uses a pilot study to evaluate how undergraduate and graduate students who have previously taken an introductory course on structural system design perceived the app. The purpose of this pilot study is to evaluate the usability of the app, its ability to improve spatial visualization ability, and to collect feedback on the app functionality. Study participants were asked to complete a pre and post-survey and the IBM Post-Study System Usability Questionnaire after engaging with the AR app on an iOS tablet. Results discuss how participants viewed the app in terms of its usability and usefulness and recommendations for tool refinement. Future work will be focused on conducting another pilot study after tool refinement before app deployment in a classroom setting.more » « lessFree, publicly-accessible full text available June 23, 2025
-
Wang, Yidi ; Shen, Yawen ; Salahshour, Behrouz ; Cetin, Mecit ; Iftekharuddin, Khan ; Tahvildari, Navid ; Huang, Guoping ; Harris, Devin K ; Ampofo, Kwame ; Goodall, Jonathan L ( , Environmental Modelling & Software)Free, publicly-accessible full text available February 1, 2025