- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dascalu, Sergiu M (2)
-
Harris_Jr, Frederick C (2)
-
Le, Vinh (2)
-
Cardillo, Carlos (1)
-
Carthen, Chase D (1)
-
Estreito, Zachary (1)
-
Strachan, Scotty (1)
-
Tavakkoli, Alireza (1)
-
Zaremehrjardi, Araam (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predicting valence and arousal values from EEG signals has been a steadfast research topic within the field of affective computing or emotional AI. Although numerous valid techniques to predict valence and arousal values from EEG signals have been established and verified, the EEG data collection process itself is relatively undocumented. This creates an artificial learning curve for new researchers seeking to incorporate EEGs within their research workflow. In this article, a study is presented that illustrates the importance of a strict EEG data collection process for EEG affective computing studies. The work was evaluated by first validating the effectiveness of a machine learning prediction model on the DREAMER dataset, then showcasing the lack of effectiveness of the same machine learning prediction model on cursorily obtained EEG data.more » « less
-
Carthen, Chase D; Zaremehrjardi, Araam; Le, Vinh; Cardillo, Carlos; Strachan, Scotty; Tavakkoli, Alireza; Harris_Jr, Frederick C; Dascalu, Sergiu M (, International Journal of Software Innovation)In many smart city projects, a common choice to capture spatial information is the inclusion of lidar data, but this decision will often invoke severe growing pains within the existing infrastructure. In this article, the authors introduce a data pipeline that orchestrates Apache NiFi (NiFi), Apache MiNiFi (MiNiFi), and several other tools as an automated solution to relay and archive lidar data captured by deployed edge devices. The lidar sensors utilized within this workflow are Velodyne Ultra Puck sensors that produce 6-7 GB packet capture (PCAP) files per hour. By both compressing the file after capturing it and compressing the file in real-time; it was discovered that GZIP and XZ both saved considerable file size being from 2-5 GB, 5 minutes in transmission time, and considerable CPU time. To evaluate the capabilities of the system design, the features of this data pipeline were compared against existing third-party services, Globus and RSync.more » « less
An official website of the United States government
