skip to main content


Search for: All records

Creators/Authors contains: "Harry, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this Perspective, we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented as part of an AlGaAs Workshop held at American University, Washington, DC, from 15 August to 17 August 2022, bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes as well as optical metrology on large-area (∼10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these semiconductor-based coatings. 
    more » « less
  2. null (Ed.)
    In order to curtail mutual coupling between two closely spaced microstrip monopole antennas operating at frequencies 28 GHz and 39 GHz, the concept of electromagnetic cloaking is applied by utilizing elliptical metasurfaces. In this paper, we show that by enveloping the monopole antennas with the specifically engineered metasurface cloaks, not only is there a significant reduction in the mutual electromagnetic interaction but also restoration in the radiation patterns are observed, as if the antennas were completely isolated from each other. The decoupling effect is seen in the reduction of mutual S-parameters. This enables the antennas to radiate independently even though they are placed in a very close proximity. 
    more » « less
  3. Abstract

    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers.

     
    more » « less
  4. Free, publicly-accessible full text available January 1, 2025