skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hartert, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories. 
    more » « less