Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This article examines the diurnal cycle of lake-effect rains over Lake Victoria and of rainfall in the surrounding catchment. The analysis focuses on four months, which represent the two wet seasons (April and November) and the two dry seasons (February and July). Lake-effect rains are strongest in April, weakest in July. In all cases there is a nocturnal rainfall maximum over the lake and a daytime maximum over the catchment, with the transition between rainfall over the lake and over the catchment occurring between 1200 and 1500 LST. During the night the surrounding catchment is mostly dry. Conversely, little to no rain falls over the lake during the afternoon and early evening. In most cases the maximum over the lake occurs at either 0600 or 0900 LST and the maximum over the catchment occurs around 1500 to 1800 LST. The diurnal cycle of Mesoscale Convective Systems (MCSs) parallels that of over-lake rainfall. MCS initiation generally begins over the catchment around 1500 LST and increases at 1800 LST. MCS initiation over the lake begins around 0300 LST and continues until 1200 LST. While some MCSs originate over the highlands to the east of the lake, most originate in situ over the lake. Maximum MCS activity over the lake occurs at 0600 LST and is associated with the systems that initiate in situ .more » « less
-
Abstract The purpose of this article is to determine the meteorological factors controlling the lake-effect rains over Lake Victoria. Winds, divergence, vertical motion, specific humidity, Convective Available Potential Energy (CAPE), and Convective Inhibition (CIN) were examined. The local wind regime and associated divergence/convergence are the major factors determining the diurnal cycle of rainfall over the lake and catchment. The major contrast between over-lake rainfall in the wet- and dry-season months is the vertical profile of omega. This appears to be a result of seasonal contrasts in CAPE, CIN, and specific humidity, parameters that play a critical role in vertical motion and convective development.more » « less
-
Abstract This article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.more » « less
-
Abstract The Congo basin in central equatorial Africa is home to some of the most intense convection in the global tropics. Mesoscale convective systems (MCSs) provide much of the annual rainfall over this region during the March–April–May (MAM) and September–October–November (SON) rainy seasons. Features of these systems are essential to rainfall variability in this region and greatly impact human health, agriculture, livestock, and drought monitoring. Knowledge of variability is hindered by the lack of in‐situ observations and meteorological stations. The present study identifies and tracks MCSs for the 33‐year period 1983–2015 for MAM and SON. MCS and environmental parameters are calculated for the rainy seasons using satellite and reanalysis data. Spatial distributions of MCS parameters and diurnal cycles for select MCS parameters are compared to prior research. Statistical significance testing is performed to determine if there are meaningful differences between the seasons. Seasonal differences are briefly discussed. 650 hPa relative vorticity patterns suggest localized terrain effects may play a role near a local maximum in MCS initiation frequency in the lee of the Great Rift Valley. Spatial distributions of 33‐year MCS counts, trajectories, speeds, sizes, maximum intensities, and durations, based on initiation locations, agree well with prior research. Differences between seasons are statistically significant and variable and latitude dependent. There is high interannual variability among all MCS and environmental parameters.