skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hartman, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We consider the problem of defining a microcanonical thermofield double state at fixed energy and angular momentum from the gravitational path integral. A semiclassical approximation to this state is obtained by imposing a mixed boundary condition on an initial time surface. We analyze the corresponding boundary value problem and gravitational action. The overlap of this state with the canonical thermofield double state, which is interpreted as the Hartle-Hawking wavefunction of an eternal black hole in a mini-superspace approximation, is calculated semiclassically. The relevant saddlepoint is a higher-dimensional, rotating generalization of the wedge geometry that has been studied in two-dimensional gravity. Along the way we discuss a new corner term in the gravitational action that arises at a rotating horizon. 
    more » « less
  2. A<sc>bstract</sc> We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikovc-theorem, and derive further independent constraints along the flow. In particular, we identify a naturalC-function that is a completely monotonic function of scale, meaning its derivatives satisfy the alternating inequalities (–1)nC(n)2) ≥ 0. The completely monotonicC-function is identical to the ZamolodchikovC-function at the endpoints, but differs along the RG flow. In addition, we apply Lorentzian techniques that we developed recently to study anomalies and RG flows in four dimensions, and show that the Zamolodchikovc-theorem can be restated as a Lorentzian sum rule relating the change in the central charge to the average null energy. This establishes that the ANEC implies thec-theorem in two dimensions, and provides a second, simpler example of the Lorentzian sum rule. 
    more » « less
  3. A<sc>bstract</sc> We establish a connection between the averaged null energy condition (ANEC) and the monotonicity of the renormalization group, by studying the light-ray operator ∫duTuuin quantum field theories that flow between two conformal fixed points. In four dimensions, we derive an exact sum rule relating this operator to the Euler coefficient in the trace anomaly, and show that the ANEC implies thea-theorem. The argument is based on matching anomalies in the stress tensor 3-point function, and relies on special properties of contact terms involving light-ray operators. We also illustrate the sum rule for the example of a free massive scalar field. Averaged null energy appears in a variety of other applications to quantum field theory, including causality constraints, Lorentzian inversion, and quantum information. The quantum information perspective provides a new derivation of thea-theorem from the monotonicity of relative entropy. The equation relating our sum rule to the dilaton scattering amplitude in the forward limit suggests an inversion formula for non-conformal theories. 
    more » « less
  4. A<sc>bstract</sc> We construct new Euclidean wormhole solutions in AdSd+1and discuss their role in UV-complete theories, without ensemble averaging. The geometries are interpreted as overlaps of GHZ-like entangled states, which arise naturally from coarse graining the density matrix of a pure state in the dual CFT. In several examples, including thin-shell collapsing black holes and pure black holes with an end-of-the-world brane behind the horizon, the coarse-graining map is found explicitly in CFT terms, and used to define a coarse-grained entropy that is equal to one quarter the area of a time-symmetric apparent horizon. Wormholes are used to derive the coarse-graining map and to study statistical properties of the quantum state. This reproduces aspects of the West Coast model of 2D gravity and the large-censemble of 3D gravity, including a Page curve, in a higher-dimensional context with generic matter fields. 
    more » « less
  5. A bstract In holographic CFTs satisfying eigenstate thermalization, there is a regime where the operator product expansion can be approximated by a random tensor network. The geometry of the tensor network corresponds to a spatial slice in the holographic dual, with the tensors discretizing the radial direction. In spherically symmetric states in any dimension and more general states in 2d CFT, this leads to a holographic error-correcting code, defined in terms of OPE data, that can be systematically corrected beyond the random tensor approximation. The code is shown to be isometric for light operators outside the horizon, and non-isometric inside, as expected from general arguments about bulk reconstruction. The transition at the horizon occurs due to a subtle breakdown of the Virasoro identity block approximation in states with a complex interior. 
    more » « less
  6. A bstract A two-dimensional CFT dual to a semiclassical theory of gravity in three dimensions must have a large central charge c and a sparse low energy spectrum. This constrains the OPE coefficients and density of states of the CFT via the conformal bootstrap. We define an ensemble of CFT data by averaging over OPE coefficients subject to these bootstrap constraints, and show that calculations in this ensemble reproduce semiclassical 3D gravity. We analyze a wide variety of gravitational solutions, both in pure Einstein gravity and gravity coupled to massive point particles, including Euclidean wormholes with multiple boundaries and higher topology spacetimes with a single boundary. In all cases we find that the on-shell action of gravity agrees with the ensemble-averaged CFT at large c . The one-loop corrections also match in the cases where they have been computed. We also show that the bulk effective theory has random couplings induced by wormholes, providing a controlled, semiclassical realization of the mechanism of Coleman, Giddings, and Strominger. 
    more » « less
  7. Black holes provide a window into the microscopic structure of spacetime in quantum gravity. Recently the quantum information contained in Hawking radiation has been calculated, verifying a key aspect of the consistency of black hole evaporation with quantum mechanical unitarity. This calculation relied crucially on recent progress in understanding the emergence of bulk spacetime from a boundary holographic description. Spacetime wormholes have played an important role in understanding the underpinnings of this result, and the precision study of such wormholes, in this and other contexts, has been enabled by the development of low-dimensional models of holography. In this white paper we review these developments and describe some of the deep open questions in this subject. These include the nature of the black hole interior, potential applications to quantum cosmology, the gravitational explanation of the fine structure of black holes, and the development of further connections to quantum information and laboratory quantum simulation. 
    more » « less