skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harvey, Sarah E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We combine stochastic thermodynamics, large deviation theory, and information theory to derive fundamental limits on the accuracy with which single cell receptors can estimate external concentrations. As expected, if the estimation is performed by an ideal observer of the entire trajectory of receptor states, then no energy consuming nonequilibrium receptor that can be divided into bound and unbound states can outperform an equilibrium two- state receptor. However, when the estimation is performed by a simple observer that measures the fraction of time the receptor is bound, we derive a fundamental limit on the accuracy of general nonequilibrium receptors as a function of energy consumption. We further derive and exploit explicit formulas to numerically estimate a Pareto-optimal tradeoff between accuracy and energy. We find this tradeoff can be achieved by nonuniform ring receptors with a number of states that necessarily increases with energy. Our results yield a thermodynamic uncertainty relation for the time a physical system spends in a pool of states and generalize the classic Berg- Purcell limit [H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977)] on cellular sensing along multiple dimensions. 
    more » « less
  2. Richards, Blake A (Ed.)
    We introduce a novel, biologically plausible local learning rule that provably increases the robustness of neural dynamics to noise in nonlinear recurrent neural networks with homogeneous nonlinearities. Our learning rule achieves higher noise robustness without sacrificing performance on the task and without requiring any knowledge of the particular task. The plasticity dynamics—an integrable dynamical system operating on the weights of the network—maintains a multiplicity of conserved quantities, most notably the network’s entire temporal map of input to output trajectories. The outcome of our learning rule is a synaptic balancing between the incoming and outgoing synapses of every neuron. This synaptic balancing rule is consistent with many known aspects of experimentally observed heterosynaptic plasticity, and moreover makes new experimentally testable predictions relating plasticity at the incoming and outgoing synapses of individual neurons. Overall, this work provides a novel, practical local learning rule that exactly preserves overall network function and, in doing so, provides new conceptual bridges between the disparate worlds of the neurobiology of heterosynaptic plasticity, the engineering of regularized noise-robust networks, and the mathematics of integrable Lax dynamical systems. 
    more » « less