skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harvey, V_Lynn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Complex spatial structures in polar mesospheric cloud (PMC) images provide visual clues to the dynamics that occur in the summer mesosphere. In this study, we document one such structure, a PMC front, by analyzing PMC images in the northern hemisphere from the Cloud Imaging and Particle Size (CIPS) instrument onboard the aeronomy of ice in the mesosphere (AIM) satellite. A PMC front is defined as a sharp boundary that separates cloudy and mostly clear regions, and where the clouds at the front boundary are brighter than the clouds in the cloudy region. We explore the environment that supports the formation of PMC fronts using near‐coincident temperature and water vapor observations from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. A comparison of PMC front locations to near‐coincident temperature profiles reveals the presence of inversion layers at PMC altitudes. The adiabatic and superadiabatic topside lapse rates of these temperature inversions indicate that some of the identified inversion layers may have been formed by gravity wave (GW) dissipation. The structure of the squared buoyancy frequency profiles indicates a stable layer or thermal duct that can be associated with large‐amplitude mesospheric inversion layers (MILs) that extend large distances. These inversion layers may be conducive to horizontal wave propagation. We hypothesize that ducted GWs may be a formation mechanism of PMC fronts. 
    more » « less
  2. Abstract In Vadas et al. (2024,https://doi.org/10.1029/2024ja032521), we modeled the atmospheric gravity waves (GWs) during 11–14 January 2016 using the HIAMCM, and found that the polar vortex jet generates medium to large‐scale, higher‐order GWs in the thermosphere. In this paper, we model the traveling ionospheric disturbances (TIDs) generated by these GWs using the HIAMCM‐SAMI3 and compare with ionospheric observations from ground‐based Global Navigation Satellite System (GNSS) receivers, Incoherent Scatter Radars (ISR) and the Super Dual Auroral Radar Network (SuperDARN). We find that medium to large‐scale TIDs are generated worldwide by the higher‐order GWs from this event. Many of the TIDs over Europe and Asia have concentric ring/arc‐like structure, and most of those over North/South America have planar wave structure and occur during the daytime. Those over North/South America propagate southward and are generated by higher‐order GWs from Europe/Asia which propagate over the Arctic. These latter TIDs can be misidentified as arising from geomagnetic forcing. We find that the higher‐order GWs that propagate to Africa and Brazil from Europe may aid in the formation of equatorial plasma bubbles (EPBs) there. We find that the simulated GWs, TIDs and EPBs agree with EISCAT, PFISR, GNSS, and SuperDARN measurements. We find that the higher‐order GWs are concentrated at N at 200 km, in agreement with GOCE and CHAMP data. Thus the polar vortex jet is important for generating TIDs in the northern winter ionosphere via multi‐step vertical coupling through GWs. 
    more » « less
  3. Abstract The work presented here introduces a new data set for inclusion of energetic electron precipitation (EEP) in climate model simulations. Measurements made by the medium energy proton and electron detector (MEPED) instruments onboard both the Polar Orbiting Environmental Satellites and the European Space Agency Meteorological Operational satellites are used to create global maps of precipitating electron fluxes. Unlike most previous data sets, the electron fluxes are computed using both the 0° and 90° MEPED detectors. Conversion of observed, broadband electron count rates to differential spectral fluxes uses a linear combination of analytical functions instead of a single function. Two dimensional maps of electron spectral flux are created using Delaunay triangulation to account for the relatively sparse nature of the MEPED sampling. This improves on previous studies that use a 1D interpolation over magnetic local time or L‐shell zonal averaging of the MEPED data. A Whole Atmosphere Community Climate Model (WACCM) simulation of the southern hemisphere 2003 winter using the new precipitating electron data set is shown to agree more closely with observations of odd nitrogen than WACCM simulations using other MEPED‐based electron data sets. Simulated EEP‐induced odd nitrogen increases led to ozone losses of more than 15% in the polar stratosphere near 10 hPa in September of 2003. 
    more » « less