Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2023
-
Abstract Background Given a collection of coexpression networks over a set of genes, identifying subnetworks that appear frequently is an important research problem known as mining frequent subgraphs. Maximal frequent subgraphs are a representative set of frequent subgraphs; A frequent subgraph is maximal if it does not have a super-graph that is frequent. In the bioinformatics discipline, methodologies for mining frequent and/or maximal frequent subgraphs can be used to discover interesting network motifs that elucidate complex interactions among genes, reflected through the edges of the frequent subnetworks. Further study of frequent coexpression subnetworks enhances the discovery of biological modules and biological signatures for gene expression and disease classification. Results We propose a reverse search algorithm, called RASMA, for mining frequent and maximal frequent subgraphs in a given collection of graphs. A key innovation in RASMA is a connected subgraph enumerator that uses a reverse-search strategy to enumerate connected subgraphs of an undirected graph. Using this enumeration strategy, RASMA obtains all maximal frequent subgraphs very efficiently. To overcome the computationally prohibitive task of enumerating all frequent subgraphs while mining for the maximal frequent subgraphs, RASMA employs several pruning strategies that substantially improve its overall runtime performance. Experimental results show that onmore »
-
Supervised learning, while deployed in real-life scenarios, often encounters instances of unknown classes. Conventional algorithms for training a supervised learning model do not provide an option to detect such instances, so they miss-classify such instances with 100% probability. Open Set Recognition (OSR) and Non-Exhaustive Learning (NEL) are potential solutions to overcome this problem. Most existing methods of OSR first classify members of existing classes and then identify instances of new classes. However, many of the existing methods of OSR only makes a binary decision, i.e., they only identify the existence of the unknown class. Hence, such methods cannot distinguish test instances belonging to incremental unseen classes. On the other hand, the majority of NEL methods often make a parametric assumption over the data distribution, which either fail to return good results, due to the reason that real-life complex datasets may not follow a well-known data distribution. In this paper, we propose a new online non-exhaustive learning model, namely, Non-Exhaustive Gaussian Mixture Generative Adversarial Networks (NE-GM-GAN) to address these issues. Our proposed model synthesizes Gaussian mixture based latent representation over a deep generative model, such as GAN, for incremental detection of instances of emerging classes in the test data. Extensive experimentalmore »