- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hashmi, Hassaan (1)
-
Kalogerias, Dionysis (1)
-
Pougkakiotis, Spyridon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electronically tunable metasurfaces, or Intelligent Reflecting Surfaces (IRSs), are a popular technology for achieving high spectral efficiency in modern wireless systems by shaping channels using a multitude of tunable passive reflecting elements. Capitalizing on key practical limitations of IRS-aided beamforming pertaining to system modeling and channel sensing/ estimation, we propose a novel, fully data-driven Zerothorder Stochastic Gradient Ascent (ZoSGA) algorithm for general two-stage (i.e., short/long-term), fully-passive IRS-aided stochastic utility maximization. ZoSGA learns long-term optimal IRS beamformers jointly with short-term optimal precoders (e.g., WMMSE-based) via minimal zeroth-order reinforcement and in a strictly model-free fashion, relying solely on the effective compound channels observed at the terminals, while being independent of channel models or network/IRS configurations. Another remarkable feature of ZoSGA is being amenable to analysis, enabling us to establish a state-of-the-art (SOTA) convergence rate of the order of O(āSāā4) under minimal assumptions, where S is the total number of IRS elements, and ā is a desired suboptimality target. Our numerical results on a standard MISO downlink IRS-aided sumrate maximization setting establish SOTA empirical behavior of ZoSGA as well, consistently and substantially outperforming standard fully model-based baselines. Lastly, we demonstrate that ZoSGA can in fact operate in the field, by directly optimizing the capacitances of a varactor-based electromagnetic IRS model (unknown to ZoSGA) on a multiple user/IRS, link-dense network setting, with essentially no computational overheads or performance degradation.more » « less
An official website of the United States government
