skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hassig, Mary Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanostructured titania, TiO2, holds significant importance in various scientific fields and technologies for their distinctive properties and multipurpose characteristics. In this article, the facile, economical, and scalable synthesis of 1D lepidocrocite, 1DL, titania nanostructures derived from a water‐soluble Ti precursor, titanium oxysulfate (with oxidation of Ti+4) at temperature <100 °C under atmospheric pressure is discussed. Titanium oxysulfate with tetramethyl ammonium hydroxide, TMAH, is simply reacted to yield individual lepidocrocite titania‐based chain‐forming nanofilaments, NFs, 6 × 6 Å2in minimal cross‐section and aspect ratios of ≈20 1DLs. If only ethanol is used for washing, the 1DL self‐assemble into ≈10 µm, porous mesostructured particles, PMPs. If water is used, quasi‐2D sheets form instead. Characterization of the resulting powders showed them to be quite similar to those derived from TiB2, and other water‐insoluble Ti precursors. The 1DL bandgap energies are ≈4 eV, due to quantum confinement. They adsorbed rhodamine 6G. The latter also sensitized the 1DLs and allowed for dye degradation using only visible light. Used as electrodes in supercapacitors, the 1DLs can be cycled over 1.6 V and result in high power densities (300 W kg−1). Stronger birefringence started to appear in samples with concentrations >15 gL−1indicating the formation of a liquid crystal phase. This new synthesis protocol enables the cheaper scalable production of 1DLs with significant implications across various fields. 
    more » « less
    Free, publicly-accessible full text available November 20, 2025