- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hassner, Tal (3)
-
Evtimov, Ivan (2)
-
Gordo, Albert (2)
-
Hazirbas, Caner (2)
-
Ibrahim, Mark (2)
-
Li, Zhiheng (2)
-
Xu, Chenliang (2)
-
Dinh, Vu (1)
-
Ferrer, Cristian C (1)
-
Ferrer, Cristian Canton (1)
-
Ho, Lam_Si Tung (1)
-
Nguyen, Cuong N (1)
-
Nguyen, Cuong V (1)
-
Tran, Anh T (1)
-
Tran, Phong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider transferability estimation, the prob- lem of estimating how well deep learning models transfer from a source to a target task. We focus on regression tasks, which received little previous attention, and propose two simple and computa- tionally efficient approaches that estimate trans- ferability based on the negative regularized mean squared error of a linear regression model. We prove novel theoretical results connecting our ap- proaches to the actual transferability of the optimal target models obtained from the transfer learning process. Despite their simplicity, our approaches significantly outperform existing state-of-the-art regression transferability estimators in both accu- racy and efficiency. On two large-scale keypoint re- gression benchmarks, our approaches yield 12% to 36% better results on average while being at least 27% faster than previous state-of-the-art methods.more » « less
-
Li, Zhiheng; Evtimov, Ivan; Gordo, Albert; Hazirbas, Caner; Hassner, Tal; Ferrer, Cristian Canton; Xu, Chenliang; Ibrahim, Mark (, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR))
-
Li, Zhiheng; Evtimov, Ivan; Gordo, Albert; Hazirbas, Caner; Hassner, Tal; Ferrer, Cristian C; Xu, Chenliang; Ibrahim, Mark (, IEEE/CVF Conference on Computer Vision and Pattern Recognition)
An official website of the United States government

Full Text Available