skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hassoun, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-supervised training methods for transformers have demonstrated remarkable performance across various domains. Previous transformer-based models, such as masked autoencoders (MAE), typically utilize a single normalization layer for both the class token [CLS] and the tokens. We propose in this paper a new yet simple normalization method that separately normalizes embedding vectors respectively corresponding to normal tokens and the [CLS] token, in order to better capture their distinct characteristics and enhance downstream task performance. Our empirical study shows that the [CLS] embeddings learned with our separate normalization layer better encode the global contextual information and are distributed more uniformly in its anisotropic space. When the conventional normalization layer is replaced with a separate normalization layer, we observe an average 2.7% performance improvement in learning tasks from the image, natural language, and graph domains. 
    more » « less