skip to main content


Search for: All records

Creators/Authors contains: "Hatchett, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric rivers (ARs) and Santa Ana winds (SAWs) are impactful weather events for California communities. Emergency planning efforts and resource management would benefit from extending lead times of skillful prediction for these and other types of extreme weather patterns. Here we describe a methodology for subseasonal prediction of impactful winter weather in California, including ARs, SAWs and heat extremes. The hybrid approach combines dynamical model and historical information to forecast probabilities of impactful weather outcomes at weeks 1–4 lead. This methodology uses dynamical model information considered most reliable, that is, planetary/synoptic‐scale atmospheric circulation, filters for dynamical model error/uncertainty at longer lead times and increases the sample of likely outcomes by utilizing the full historical record instead of a more limited suite of dynamical forecast model ensemble members. We demonstrate skill above climatology at subseasonal timescales, highlighting potential for use in water, health, land, and fire management decision support.

     
    more » « less
  2. Abstract

    Predicting winter flooding is critical to protecting people and securing water resources in California’s Sierra Nevada. Rain-on-snow (ROS) events are a common cause of widespread flooding and are expected to increase in both frequency and magnitude with anthropogenic climate change in this region. ROS flood severity depends on terrestrial water input (TWI), the sum of rain and snowmelt that reaches the land surface. However, an incomplete understanding of the processes that control the flow and refreezing of liquid water in the snowpack limits flood prediction by operational and research models. We examine how antecedent snowpack conditions alter TWI during 71 ROS events between water years 1981 and 2019. Observations across a 500-m elevation gradient from the Independence Creek catchment were input into SNOWPACK, a one-dimensional, physically based snow model, initiated with the Richards equation and calibrated with collocated snow pillow observations. We compare observed “historical” and “scenario” ROS events, where we hold meteorologic conditions constant but vary snowpack conditions. Snowpack variables include cold content, snow density, liquid water content, and snow water equivalent. Results indicate that historical events with TWI > rain are associated with the largest observed streamflows. A multiple linear regression analysis of scenario events suggests that TWI is sensitive to interactions between snow density and cold content, with denser (>0.30 g cm−3) and colder (<−0.3 MJ of cold content) snowpacks retaining >50 mm of TWI. These results highlight the importance of hydraulic limitations in dense snowpacks and energy limitations in warm snowpacks for retaining liquid water that would otherwise be available as TWI for flooding.

    Significance Statement

    The purpose of this study is to understand how the snowpack modulates quantities of water that reach the land surface during rain-on-snow (ROS) events. While the amount of near-term storm rainfall is reasonably predicted by meteorologists, major floods associated with ROS are more difficult to predict and are expected to increase in frequency. Our key findings are that liquid water inputs to the land surface vary with snowpack characteristics, and although many hydrologic models incorporate snowpack cold content and density to some degree, the complexity of ROS events justifies the need for additional observations to improve operational forecasting model results. Our findings suggest additional comparisons between existing forecasting models and those that physically represent the snowpack, as well as field-based observations of cold content and density and liquid water content, would be useful follow-up investigations.

     
    more » « less
  3. Abstract

    The western United States (US) is a hotspot for snow drought. The Oregon Cascade Range is highly sensitive to warming and as a result has experienced the largest mountain snowpack losses in the western US since the mid‐20th century, including a record‐breaking snow drought in 2014–2015 that culminated in a state of emergency. While Oregon Cascade snowpacks serve as the state's primary water supply, short instrumental records limit water managers' ability to fully constrain long‐term natural snowpack variability prior to the influence of ongoing and projected anthropogenic climate change. Here, we use annually‐resolved tree‐ring records to develop the first multi‐century reconstruction of Oregon Cascade April 1st Snow Water Equivalent (SWE). The model explains 58% of observed snowpack variability and extends back to 1688 AD, nearly quintupling the length of the existing snowpack record. Our reconstruction suggests that only one other multiyear event in the last three centuries was as severe as the 2014–2015 snow drought. The 2015 event alone was more severe than nearly any other year in over three centuries. Extreme low‐to‐high snowpack “whiplash” transitions are a consistent feature throughout the reconstructed record. Multi‐decadal intervals of persistent below‐the‐mean peak SWE are prominent features of pre‐instrumental snowpack variability, but are generally absent from the instrumental period and likely not fully accounted for in modern water management. In the face of projected snow drought intensification and warming, our findings motivate adaptive management strategies that address declining snowpack and increasingly variable precipitation regimes.

     
    more » « less
  4. Abstract

    Downslope winds are mesoscale mountain meteorological phenomena that contribute to localized temperature extremes and contribute to numerous societal and environmental impacts. Whereas previous studies have examined local downslope winds, no known efforts have attempted to identify and characterize meso‐ to synoptic‐scale downslope winds globally using a common approach. We use a conceptual model for downslope winds that employs cross‐barrier wind speed, near‐mountain top static stability, and downward vertical velocity using thresholds guided by a chronology of local downslope winds and meta‐analysis of downslope wind case studies. This approach was applied to ERA‐5 reanalysis during 1979–2018 to develop a global atlas of downslope winds. Downslope winds adhered to distinct geographic and seasonal patterns, with peak occurrence in north–south oriented midlatitude mountains in the winter hemisphere associated with strong cross‐mountain winds and stability. However, we identify numerous locations from the tropics to the high‐latitudes where downslope winds occur at least 60 days a year as a byproduct of the general circulation and local‐scale circulation interacting with topography. The four‐decade‐long data set is also used to examine statistical relationships between the occurrence of downslope winds and El Niño‐Southern Oscillation as well as long‐term trends in downslope wind occurrence.

     
    more » « less
  5. Abstract

    We use an 11‐year numerically downscaled climatology to diagnose various characteristics of downslope windstorms known as Sundowners that occur along the Central California coast. At the surface, Sundowners are manifested as strong northerly winds along the southern slopes of the east‐west trending Santa Ynez Mountains that are part of a lee slope jet forced by internal gravity wave breaking aloft. Our analysis shows that barotropic shallow water interfacial waves along an elevated inversion do not play any significant part in Sundowner dynamics. The mountain wave is forced on a diurnal basis by the synoptically driven strong jet of north‐northwesterly winds located just offshore, which propagates into and through the Santa Ynez Valley. The occurrence of Sundowners is associated with a transcritical transition of the barotropic shallow water mode of the marine boundary layer around the Southern California Bight. The strength and presence of the alongshore jet are of primary importance in determining upstream profiles of wind speed and static stability and thus the magnitude and location of most Sundowner events. This is especially true for the relatively common and mild Gaviota‐type events that frequently occur during spring in the western part of the range. We show that in a general sense, there is no distinct eastern or Montecito type of Sundowner event but rather a continuum of Sundowners based on wind direction upstream near ridgetop height. Montecito‐type events tend to occur in conjunction with internal gravity wave breaking over the upstream San Rafael range that enhances mountain wave activity near Montecito.

     
    more » « less