Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Many ligands commonly used to prepare nanoparticle catalysts with precise nanoscale features contain nitrogen (e.g., oleylamine); here, it is found that the use of nitrogen‐containing ligands during the synthesis of metal oxide nanoparticle catalysts substantially impacts product analysis during photocatalytic studies. These experimental results are confirmed via hybrid Density Functional Theory (DFT) computations of the materials’ electronic properties to evaluate their viability as photocatalysts for nitrogen reduction. This nitrogen ligand contamination, and subsequent interference in photocatalytic studies is avoidable through the careful design of synthetic pathways that exclude nitrogen‐containing constituents. This result highlights the urgent need for careful evaluation of catalyst synthesis protocols, as contamination by nitrogen‐containing ligands may go unnoticed since the presence of nitrogen is often not detected or probed.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available October 1, 2025
-
There are numerous reports of photo(electro)catalysts demonstrating activity for nitrogen reduction to ammonia and a few reports of photo(electro)catalysts demonstrating activity for nitrogen oxidation to nitric acid. However, progress in advancing solar-to-fertilizer applications is slow, due in part to the pace of catalyst screening. Most evaluations of photo(electro)catalysts activity occur using batch reactors. This is because common product analyses require accumulation of ammonia or nitric acid in the reactor to overcome instrument detection limits. The primary aim here is to examine the use of an electroanalytical method, rotating ring disk electrode voltammetry (RRDE), to detect ammonia produced by a nitrogen fixing photo(electro)catalyst. To examine the potential for RRDE, we investigated a photo(electro)catalyst known to reduce nitrogen to ammonia (titania), while varying the applied electrochemical potential and degree of illumination on the disk. We show that the observed ammonia oxidation at the ring electrode corresponds strongly with ammonia measurements obtained from the bulk electrolyte. Indicating that RRDE may be effective for catalyst screening. The chief limitation of this approach is the need for an alkaline electrolyte. In addition, this approach does not rule out the presence of adventitious ammonia.more » « less