skip to main content


Search for: All records

Creators/Authors contains: "Haupt, Sue Ellen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Flows in the atmospheric boundary layer are turbulent, characterized by a large Reynolds number, the existence of a roughness sublayer and the absence of a well-defined viscous layer. Exchanges with the surface are therefore dominated by turbulent fluxes. In numerical models for atmospheric flows, turbulent fluxes must be specified at the surface; however, surface fluxes are not known a priori and therefore must be parametrized. Atmospheric flow models, including global circulation, limited area models, and large-eddy simulation, employ Monin–Obukhov similarity theory (MOST) to parametrize surface fluxes. The MOST approach is a semi-empirical formulation that accounts for atmospheric stability effects through universal stability functions. The stability functions are determined based on limited observations using simple regression as a function of the non-dimensional stability parameter representing a ratio of distance from the surface and the Obukhov length scale (Obukhov in Trudy Inst Theor Geofiz AN SSSR 1:95–115, 1946),$$z/L$$z/L. However, simple regression cannot capture the relationship between governing parameters and surface-layer structure under the wide range of conditions to which MOST is commonly applied. We therefore develop, train, and test two machine-learning models, an artificial neural network (ANN) and random forest (RF), to estimate surface fluxes of momentum, sensible heat, and moisture based on surface and near-surface observations. To train and test these machine-learning algorithms, we use several years of observations from the Cabauw mast in the Netherlands and from the National Oceanic and Atmospheric Administration’s Field Research Division tower in Idaho. The RF and ANN models outperform MOST. Even when we train the RF and ANN on one set of data and apply them to the second set, they provide more accurate estimates of all of the fluxes compared to MOST. Estimates of sensible heat and moisture fluxes are significantly improved, and model interpretability techniques highlight the logical physical relationships we expect in surface-layer processes.

     
    more » « less
  2. Abstract

    Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from 3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A convolutional neural network is compared with logistic regressions using input variables derived from either the spatial means of each field or principal component analysis. The convolutional neural network statistically significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator characteristic curve. Interpretation of the convolutional neural network through feature importance and feature optimization reveals that the network synthesized information about the environment and storm morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind shear profile that favors wide updrafts. Different neurons in the network also record different storm modes, and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of different storm modes in the NCAR ensemble.

     
    more » « less
  3. Abstract

    The human population on Earth has increased by a factor of 4.6 in the last 100 years and has become more centered in urban environments. This expansion and migration pattern has resulted in stresses on the environment. Meteorological applications have helped to understand and mitigate those stresses. This chapter describes several applications that enable the population to interact with the environment in more sustainable ways. The first topic treated is urbanization itself and the types of stresses exerted by population growth and its attendant growth in urban landscapes—buildings and pavement—and how they modify airflow and create a local climate. We describe environmental impacts of these changes and implications for the future. The growing population uses increasing amounts of energy. Traditional sources of energy have taxed the environment, but the increase in renewable energy has used the atmosphere and hydrosphere as its fuel. Utilizing these variable renewable resources requires meteorological information to operate electric systems efficiently and economically while providing reliable power and minimizing environmental impacts. The growing human population also pollutes the environment. Thus, understanding and modeling the transport and dispersion of atmospheric contaminants are important steps toward regulating the pollution and mitigating impacts. This chapter describes how weather information can help to make surface transportation more safe and efficient. It is explained how these applications naturally require transdisciplinary collaboration to address these challenges caused by the expanding population.

     
    more » « less