We recovered 57 bacterial metagenome-assembled genomes (MAGs) from benthic microbial mat pinnacles from Lake Vanda, Antarctica. These MAGs provide access to genomes from polar environments and can assist in culturing and utilizing these Antarctic bacteria.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Becket, Elinne (Ed.)
ABSTRACT Free, publicly-accessible full text available May 9, 2025 -
The McMurdo Dry Valleys are a cold and arid environment with low biomass relative to most ice- free environments. The ice-covered lakes in the valleys, however, provide a refuge for diverse microbial communities where liquid water persists year-round. Within these lakes, benthic micro- bial assemblages form ornate structures in the absence of burrowing and grazing organisms. In Lake Vanda, the microbial communities create pinnacles with features including tip, web, and ridge ornaments and brown, green, purple, and beige pigmented zones. Bacterial 16S rRNA gene composition differed between lake depths for all sampled features. Within each depth, community composition correlated with the relative distance into the pinnacle and there were also some significant differences between assemblages in certain zones. The bacterial community composi- tion in the zones may reflect how they respond to environmental changes as the mat is buried, altering the internal light environment and affecting 16S rRNA gene assemblages across niches from the surface to the interior.more » « less
-
Abstract Aquatic ecosystems - lakes, ponds and streams - are hotspots of biodiversity in the cold and arid environment of Continental Antarctica. Environmental change is expected to increasingly alter Antarctic aquatic ecosystems and modify the physical characteristics and interactions within the habitats that they support. Here, we describe physical and biological features of the peripheral ‘moat’ of a closed-basin Antarctic lake. These moats mediate connectivity amongst streams, lake and soils. We highlight the cyclical moat transition from a frozen winter state to an active open-water summer system, through refreeze as winter returns. Summer melting begins at the lakebed, initially creating an ice-constrained lens of liquid water in November, which swiftly progresses upwards, creating open water in December. Conversely, freezing progresses slowly from the water surface downwards, with water at 1 m bottom depth remaining liquid until May. Moats support productive, diverse benthic communities that are taxonomically distinct from those under the adjacent permanent lake ice. We show how ion ratios suggest that summer exchange occurs amongst moats, streams, soils and sub-ice lake water, perhaps facilitated by within-moat density-driven convection. Moats occupy a small but dynamic area of lake habitat, are disproportionately affected by recent lake-level rises and may thus be particularly vulnerable to hydrological change.
Free, publicly-accessible full text available April 19, 2025 -
Cyanobacteria in polar environments face environmental challenges, including cold temperatures and extreme light seasonality with small diurnal variation, which has implications for polar circadian clocks. However, polar cyanobacteria remain underrepresented in available genomic data, and there are limited opportunities to study their genetic adaptations to these challenges. This paper presents four new Antarctic cyanobacteria metagenome-assembled genomes (MAGs) from microbial mats in Lake Vanda in the McMurdo Dry Valleys in Antarctica. The four MAGs were classified as
Leptolyngbya sp. BulkMat.35,Pseudanabaenaceae cyanobacterium MP8IB2.15,Microcoleus sp. MP8IB2.171, andLeptolyngbyaceae cyanobacterium MP9P1.79. The MAGs contain 2.76 Mbp – 6.07 Mbp, and the bin completion ranges from 74.2–92.57%. Furthermore, the four cyanobacteria MAGs have average nucleotide identities (ANIs) under 90% with each other and under 77% with six existing polar cyanobacteria MAGs and genomes. This suggests that they are novel cyanobacteria and demonstrates that polar cyanobacteria genomes are underrepresented in reference databases and there is continued need for genome sequencing of polar cyanobacteria. Analyses of the four novel and six existing polar cyanobacteria MAGs and genomes demonstrate they have genes coding for various cold tolerance mechanisms and most standard circadian rhythm genes with theLeptolyngbya sp. BulkMat.35 andLeptolyngbyaceae cyanobacterium MP9P1.79 containedkaiB3 , a divergent homolog ofkaiB . -
Persistent cold temperatures, a paucity of nutrients, freeze-thaw cycles, and the strongly seasonal light regime make Antarctica one of Earth’s least hospitable surface environments for complex life. Cyanobacteria, however, are well-adapted to such conditions and are often the dominant primary producers in Antarctic inland water environments. In particular, the network of meltwater ponds on the ‘dirty ice’ of the McMurdo Ice Shelf is an ecosystem with extensive cyanobacteria-dominated microbial mat accumulations. This study investigated intact polar lipids (IPLs), heterocyte glycolipids (HGs), and bacteriohopanepolyols (BHPs) in combination with 16S and 18S rRNA gene diversity in microbial mats of twelve ponds in this unique polar ecosystem. To constrain the effects of nutrient availability, temperature and freeze-thaw cycles on the lipid membrane composition, lipids were compared to stromatolite-forming cyanobacterial mats from ice-covered lakes in the McMurdo Dry Valleys as well as from (sub)tropical regions and hot springs. The 16S rRNA gene compositions of the McMurdo Ice Shelf mats confirm the dominance of Cyanobacteria and Proteobacteria while the 18S rRNA gene composition indicates the presence of Ochrophyta, Chlorophyta, Ciliophora, and other microfauna. IPL analyses revealed a predominantly bacterial community in the meltwater ponds, with archaeal lipids being barely detectable. IPLs are dominated by glycolipids and phospholipids, followed by aminolipids. The high abundance of sugar-bound lipids accords with a predominance of cyanobacterial primary producers. The phosphate-limited samples from the (sub)tropical, hot spring, and Lake Vanda sites revealed a higher abundance of aminolipids compared to those of the nitrogen-limited meltwater ponds, affirming the direct affects that N and P availability have on IPL compositions. The high abundance of polyunsaturated IPLs in the Antarctic microbial mats suggests that these lipids provide an important mechanism to maintain membrane fluidity in cold environments. High abundances of HG keto-ols and HG keto-diols, produced by heterocytous cyanobacteria, further support these findings and reveal a unique distribution compared to those from warmer climates.more » « less
-
null (Ed.)Sulfide inhibits oxygenic photosynthesis by blocking electron transfer between H2O and the oxygen-evolving complex in the D1 protein of Photosystem II. The ability of cyanobacteria to counter this effect has implications for understanding the productivity of benthic microbial mats in sulfidic environments throughout Earth history. In Lake Fryxell, Antarctica, the benthic, filamentous cyanobacterium Phormidium pseudopriestleyi creates a 1–2 mm thick layer of 50 µmol L−1 O2 in otherwise sulfidic water, demonstrating that it sustains oxygenic photosynthesis in the presence of sulfide. A metagenome-assembled genome of P. pseudopriestleyi indicates a genetic capacity for oxygenic photosynthesis, including multiple copies of psbA (encoding the D1 protein of Photosystem II), and anoxygenic photosynthesis with a copy of sqr (encoding the sulfide quinone reductase protein that oxidizes sulfide). The genomic content of P. pseudopriestleyi is consistent with sulfide tolerance mechanisms including increasing psbA expression or directly oxidizing sulfide with sulfide quinone reductase. However, the ability of the organism to reduce Photosystem I via sulfide quinone reductase while Photosystem II is sulfide-inhibited, thereby performing anoxygenic photosynthesis in the presence of sulfide, has yet to be demonstrated.more » « less
-
Clues to the evolutionary steps producing innovations in oxygenic photosynthesis may be preserved in the genomes of organisms phylogenetically placed between non-photosynthetic Vampirovibrionia (formerly Melainabacteria) and the thylakoid-containing Cyanobacteria. However, only two species with published genomes are known to occupy this phylogenetic space, both within the genus Gloeobacter. Here, we describe nearly complete, metagenome-assembled genomes (MAGs) of an uncultured organism phylogenetically placed near Gloeobacter, for which we propose the name Candidatus Aurora vandensis {Au’ro.ra. L. fem. n. aurora, the goddess of the dawn in Roman mythology; van.de’nsis. N.L. fem. adj. vandensis of Lake Vanda, Antarctica}. The MAG of A. vandensis contains homologs of most genes necessary for oxygenic photosynthesis including key reaction center proteins. Many accessory subunits associated with the photosystems in other species either are missing from the MAG or are poorly conserved. The MAG also lacks homologs of genes associated with the pigments phycocyanoerethrin, phycoeretherin and several structural parts of the phycobilisome. Additional characterization of this organism is expected to inform models of the evolution of oxygenic photosynthesis.more » « less
-
ABSTRACT Ecological communities are regulated by the flow of energy through environments. Energy flow is typically limited by access to photosynthetically active radiation (PAR) and oxygen concentration (O2). The microbial mats growing on the bottom of Lake Fryxell, Antarctica, have well-defined environmental gradients in PAR and (O2). We analyzed the metagenomes of layers from these microbial mats to test the extent to which access to oxygen and light controls community structure. We found variation in the diversity and relative abundances of Archaea, Bacteria and Eukaryotes across three (O2) and PAR conditions: high (O2) and maximum PAR, variable (O2) with lower maximum PAR, and low (O2) and maximum PAR. We found distinct communities structured by the optimization of energy use on a millimeter-scale across these conditions. In mat layers where (O2) was saturated, PAR structured the community. In contrast, (O2) positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. Microbial communities changed across covarying gradients of PAR and (O2). The comprehensive metagenomic analysis suggests that the benthic microbial communities in Lake Fryxell are structured by energy flow across both meter- and millimeter-scales.more » « less