skip to main content


Search for: All records

Creators/Authors contains: "Haworth, Kari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coyle, Laura E ; Perrin, Marshall D ; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  2. Coyle, Laura E ; Perrin, Marshall D ; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  3. Coyle, Laura E ; Perrin, Marshall D ; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  4. Coyle, Laura E ; Perrin, Marshall D ; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  5. Coyle, Laura E ; Perrin, Marshall D ; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  6. Coyle, Laura E ; Perrin, Marshall D ; Matsuura, Shuji (Ed.)
    Free, publicly-accessible full text available August 23, 2025
  7. Holland, Andrew D. ; Beletic, James (Ed.)
    The Wide-Field Infrared Transient Explorer (WINTER) is a new time-domain instrument which will perform a seeing-limited survey of the near-infrared sky. Deployed on a dedicated 1-meter robotic telescope at Palomar Observatory, WINTER is designed to study transients of particular interest in the near-infrared including kilo-novae from gravitational-wave sources, supernovae, tidal disruption events, and transiting exoplanets around low mass stars with surveys to a depth of J=21 magnitudes. WINTER's custom camera combines six commercial large-format Indium Gallium Arsenide (InGaAs) sensors, observing in Y, J, and a short-H (Hs) band filters (0.9-1.7 microns), and employs a novel tiled optical design to cover a >1 degree squared field of view with 90% fill factor. Each wide-format (1920 x 1080 pixels) InGaAs sensor operates at T = -50°C with a thermoelectric cooler, achieving background-limited photometry without cryogenic cooling. The tiled InGaAs sensors result in a wide field-of-view instrument with significant cost savings when compared to HgCdTe sensors. We present WINTER's novel readout scheme, which includes custom electronics, firmware, and software for low-noise, real-time readout of the InGaAs sensors, including up to a 30x speed up of data reduction using GPUs. This work also outlines the cooling design for warm (T = -50°C) operation of the sensors with a two-stage thermometric cooler, copper heat pipes, and liquid cooling. We conclude with updates on the alignment, integration, and test of the WINTER instrument with a projected first light in Fall 2022. 
    more » « less
  8. The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide. 
    more » « less
  9. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at the Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r -process material in binary neutron star (BNS) merger remnants detected by LIGO. We describe the scientific goals and survey design of the WINTER instrument. With a dedicated trigger and the ability to map the full LIGO O4 positional error contour in the IR to a distance of 190 Mpc within four hours, WINTER will be a powerful kilonova discovery engine and tool for multi-messenger astrophysics investigations. In addition to follow-up observations of merging binaries, WINTER will facilitate a wide range of time-domain astronomical observations, all the while building up a deep coadded image of the static infrared sky suitable for survey science. WINTER's custom camera features six commercial large-format Indium Gallium Arsenide (InGaAs) sensors and a tiled optical system which covers a <1-square-degree field of view with 90% fill factor. The instrument observes in Y, J and a short-H (Hs) band tuned to the long-wave cutoff of the InGaAs sensors, covering a wavelength range from 0.9 - 1.7 microns. We present the design of the WINTER instrument and current progress towards final integration at the Palomar Observatory and commissioning planned for mid-2021. 
    more » « less
  10. Context.Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood.

    Aims.To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052.

    Methods.We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine out to ∼1 pc to study the jet collimation.

    Results.For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 μas perpendicular to the jet axes, corresponding to just around 250 RS(Schwarzschild radii). This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 3 × 103RSand 1 × 104RSdistances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 μas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements.

    Conclusions.The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025