skip to main content

Search for: All records

Creators/Authors contains: "Hayashida, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper limits of 8.4 × 10 7 cm −2 (3.0 × 10 9 cm −2 ) on the electron antineutrino (electron neutrino) fluence at 20 MeV normalized to the X12 flare, assuming that the neutrino fluence ismore »proportional to the X-ray intensity.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Abstract We report on a search for electron antineutrinos ( ν ¯ e ) from astrophysical sources in the neutrino energy range 8.3–30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60–110 cm −2 s −1 (90% confidence level, CL) in the analysis range and present a model-independentmore »flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of 8 B solar neutrinos converting into ν ¯ e , P ν e → ν ¯ e < 3.5 × 10 − 5 (90% CL) assuming an undistorted ν ¯ e shape. This corresponds to a solar ν ¯ e flux of 60 cm −2 s −1 (90% CL) in the analysis energy range.« less
    Free, publicly-accessible full text available January 1, 2023
  3. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.« less
    Free, publicly-accessible full text available December 1, 2023
  4. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed tomore »meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.« less
    Free, publicly-accessible full text available December 1, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Free, publicly-accessible full text available May 1, 2023
  7. Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10more »situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by $${\sim }2\%$$ ∼ 2 % across a large part of the $$p_{\text {T}}$$ p T spectrum in the central region and underestimated by $${\sim }4\%$$ ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are $${\lesssim }1\%$$ ≲ 1 % for $$15« less
    Free, publicly-accessible full text available March 1, 2023