skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hays, Cynthia G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrassZostera marina) is approximately 100–200 m. This distance is surprisingly more similar to that of wind‐dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants likeZosteraare commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome‐wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth‐related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes. 
    more » « less
  2. null (Ed.)
  3. Many species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait. Here, we report the results of, to our knowledge, the first meta-analysis to examine within-species variation in thermal plasticity, using results from 20 studies (19 species) that quantified thermal acclimation capacities across 78 populations. We used meta-regression to evaluate two leading hypotheses. The climate variability hypothesis predicts that populations from more thermally variable habitats will have greater plasticity, while the trade-off hypothesis predicts that populations with the lowest heat tolerance will have the greatest plasticity. Our analysis indicates strong support for the trade-off hypothesis because populations with greater thermal tolerance had reduced plasticity. These results advance our understanding of variation in populations' susceptibility to climate change and imply that populations with the highest thermal tolerance may have limited phenotypic plasticity to adjust to ongoing climate warming. 
    more » « less
  4. null (Ed.)