Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fires in the wildland-urban interface (WUI) are a global issue with growing importance. However, the impact of WUI fires on air quality and health is less understood compared to that of fires in wildland. We analyze WUI fire impacts on air quality and health at the global scale using a multi-scale atmospheric chemistry model—the Multi-Scale Infrastructure for Chemistry and Aerosols model (MUSICA). WUI fires have notable impacts on key air pollutants [e.g., carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3)]. The health impact of WUI fire emission is disproportionately large compared to wildland fires primarily because WUI fires are closer to human settlement. Globally, the fraction of WUI fire–caused annual premature deaths (APDs) to all fire–caused APDs is about three times of the fraction of WUI fire emissions to all fire emissions. The developed model framework can be applied to address critical needs in understanding and mitigating WUI fires and their impacts.more » « lessFree, publicly-accessible full text available March 14, 2026
-
Free, publicly-accessible full text available August 15, 2025
-
Abstract. We quantify future changes in wildfire burned area and carbon emissions inthe 21st century under four Shared Socioeconomic Pathways (SSPs) scenariosand two SSP5-8.5-based solar geoengineering scenarios with a target surfacetemperature defined by SSP2-4.5 – solar irradiance reduction (G6solar) andstratospheric sulfate aerosol injections (G6sulfur) – and explore themechanisms that drive solar geoengineering impacts on fires. This study isbased on fully coupled climate–chemistry simulations with simulatedoccurrence of fires (burned area and carbon emissions) using the WholeAtmosphere Community Climate Model version 6 (WACCM6) as the atmosphericcomponent of the Community Earth System Model version 2 (CESM2). Globally,total wildfire burned area is projected to increase over the 21st centuryunder scenarios without geoengineering and decrease under the twogeoengineering scenarios. By the end of the century, the two geoengineeringscenarios have lower burned area and fire carbon emissions than not onlytheir base-climate scenario SSP5-8.5 but also the targeted-climate scenarioSSP2-4.5. Geoengineering reduces wildfire occurrence by decreasing surfacetemperature and wind speed and increasing relative humidity and soil water,with the exception of boreal regions where geoengineering increases theoccurrence of wildfires due to a decrease in relative humidity and soilwater compared with the present day. This leads to a global reduction in burnedarea and fire carbon emissions by the end of the century relative to theirbase-climate scenario SSP5-8.5. However, geoengineering also yieldsreductions in precipitation compared with a warming climate, which offsetssome of the fire reduction. Overall, the impacts of the different drivingfactors are larger on burned area than fire carbon emissions. In general,the stratospheric sulfate aerosol approach has a stronger fire-reducingeffect than the solar irradiance reduction approach.more » « less
-
Abstract. The widely used open-source community Noah with multi-parameterization options (Noah-MP) land surface model (LSM) isdesigned for applications ranging from uncoupled land surfacehydrometeorological and ecohydrological process studies to coupled numericalweather prediction and decadal global or regional climate simulations. It hasbeen used in many coupled community weather, climate, and hydrology models. Inthis study, we modernize and refactor the Noah-MP LSM by adopting modern Fortrancode standards and data structures, which substantially enhance the modelmodularity, interoperability, and applicability. The modernized Noah-MP isreleased as the version 5.0 (v5.0), which has five key features: (1) enhanced modularization as a result of re-organizing model physics into individualprocess-level Fortran module files, (2) an enhanced data structure with newhierarchical data types and optimized variable declaration andinitialization structures, (3) an enhanced code structure and calling workflowas a result of leveraging the new data structure and modularization, (4) enhanced(descriptive and self-explanatory) model variable naming standards, and (5) enhanced driver and interface structures to be coupled with the hostweather, climate, and hydrology models. In addition, we create a comprehensivetechnical documentation of the Noah-MP v5.0 and a set of model benchmark andreference datasets. The Noah-MP v5.0 will be coupled to variousweather, climate, and hydrology models in the future. Overall, the modernizedNoah-MP allows a more efficient and convenient process for future modeldevelopments and applications.more » « less
-
Abstract. The Snow, Ice, and Aerosol Radiative (SNICAR) model has been used in various capacities over the last 15 years to model the spectral albedo of snow with light-absorbing constituents (LACs). Recent studies have extended the model to include an adding-doubling two-stream solver and representations of non-spherical ice particles; carbon dioxide snow; snow algae; and new types of mineral dust, volcanic ash, and brown carbon. New options also exist for ice refractive indices and solar-zenith-angle-dependent surface spectral irradiances used to derive broadband albedo. The model spectral range was also extended deeper into the ultraviolet for studies of extraterrestrial and high-altitude cryospheric surfaces. Until now, however, these improvements and capabilities have not been merged into a unified code base. Here, we document the formulation and evaluation of the publicly available SNICAR-ADv3 source code, web-based model, and accompanying library of constituent optical properties. The use of non-spherical ice grains, which scatter less strongly into the forward direction, reduces the simulated albedo perturbations from LACs by ∼9 %–31 %, depending on which of the three available non-spherical shapes are applied. The model compares very well against measurements of snow albedo from seven studies, though key properties affecting snow albedo are not fully constrained with measurements, including ice effective grain size of the top sub-millimeter of the snowpack, mixing state of LACs with respect to ice grains, and site-specific LAC optical properties. The new default ice refractive indices produce extremely high pure snow albedo (>0.99) in the blue and ultraviolet part of the spectrum, with such values only measured in Antarctica so far. More work is needed particularly in the representation of snow algae, including experimental verification of how different pigment expressions and algal cell concentrations affect snow albedo. Representations and measurements of the influence of liquid water on spectral snow albedo are also needed.more » « less
-
Abstract The Noah‐MP land surface model (LSM) relies on the Monin‐Obukhov (M‐O) Similarity Theory (MOST) to calculate land‐atmosphere exchanges of water, energy, and momentum fluxes. However, MOST flux‐profile relationships neglect canopy‐induced turbulence in the roughness sublayer (RSL) and parameterize within‐canopy turbulence in an ad hoc manner. We implement a new physics scheme (M‐O‐RSL) into Noah‐MP that explicitly parameterizes turbulence in RSL. We compare Noah‐MP simulations employing the M‐O‐RSL scheme (M‐O‐RSL simulations) and the default M‐O scheme (M‐O simulations) against observations obtained from 647 Snow Telemetry (SNOTEL) stations and two AmeriFlux stations in the western United States. M‐O‐RSL simulations of snow water equivalent (SWE) outperform M‐O simulations over 64% and 69% of SNOTEL sites in terms of root‐mean‐square‐error (RMSE) and correlation, respectively. The largest improvements in skill for M‐O‐RSL occur over closed shrubland sites, and the largest degradations in skill occur over deciduous broadleaf forest sites. Differences between M‐O and M‐O‐RSL simulated snowpack are primarily attributable to differences in aerodynamic conductance for heat underneath the canopy top, which modulates sensible heat flux. Differences between M‐O and M‐O‐RSL within‐canopy and below‐canopy sensible heat fluxes affect the amount of heat transported into snowpack and hence change snowmelt when temperatures are close to or above the melting point. The surface energy budget analysis over two AmeriFlux stations shows that differences between M‐O and M‐O‐RSL simulations can be smaller than other model biases (e.g., surface albedo). We intend for the M‐O‐RSL physics scheme to improve performance and uncertainty estimates in weather and hydrological applications that rely on Noah‐MP.more » « less