skip to main content

Search for: All records

Creators/Authors contains: "He, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we introduce a deep spiking delayed feedback reservoir (DFR) model to combine DFR with spiking neuros: DFRs are a new type of recurrent neural networks (RNNs) that are able to capture the temporal correlations in time series while spiking neurons are energy-efficient and biologically plausible neurons models. The introduced deep spiking DFR model is energy-efficient and has the capability of analyzing time series signals. The corresponding field programmable gate arrays (FPGA)-based hardware implementation of such deep spiking DFR model is introduced and the underlying energy-efficiency and recourse utilization are evaluated. Various spike encoding schemes are explored andmore »the optimal spike encoding scheme to analyze the time series has been identified. To be specific, we evaluate the performance of the introduced model using the spectrum occupancy time series data in MIMO-OFDM based cognitive radio (CR) in dynamic spectrum sharing (DSS) networks. In a MIMO-OFDM DSS system, available spectrum is very scarce and efficient utilization of spectrum is very essential. To improve the spectrum efficiency, the first step is to identify the frequency bands that are not utilized by the existing users so that a secondary user (SU) can use them for transmission. Due to the channel correlation as well as users' activities, there is a significant temporal correlation in the spectrum occupancy behavior of the frequency bands in different time slots. The introduced deep spiking DFR model is used to capture the temporal correlation of the spectrum occupancy time series and predict the idle/busy subcarriers in future time slots for potential spectrum access. Evaluation results suggest that our introduced model achieves higher area under curve (AUC) in the receiver operating characteristic (ROC) curve compared with the traditional energy detection-based strategies and the learning-based support vector machines (SVMs).« less
  2. reveal the mechanism of intermittent coupling, where the nodes are connected merely in discontinuous time durations. Instead of the common weighted average technique, by proposing a direct error method and constructing piecewise Lyapunov functions, several intermittently adaptive designs are developed to update the complex-valued coupling weights. Especially, an adaptive pinning protocol is designed for ICCVNs with heterogeneous coupling weights and the synchronization is ensured by piecewise adjusting the complex-valued weights of edges within a spanning tree. For ICCVNs with homogeneous coupling weights, based on a connected dominating set, an intermittently adaptive algorithm is developed which just depends on the informationmore »of the dominating set with their neighbors. At the end, the established theoretical results are verified by providing two numerical examples.« less
  3. Daumé, H ; Singh, A (Ed.)
    An acknowledged weakness of neural networks is their vulnerability to adversarial perturbations to the inputs. To improve the robustness of these models, one of the most popular defense mechanisms is to alternatively maximize the loss over the constrained perturbations (or called adversaries) on the inputs using projected gradient ascent and minimize over weights. In this paper, we analyze the dynamics of the maximization step towards understanding the experimentally observed effectiveness of this defense mechanism. Specifically, we investigate the non-concave landscape of the adversaries for a two-layer neural network with a quadratic loss. Our main result proves that projected gradient ascentmore »finds a local maximum of this non-concave problem in a polynomial number of iterations with high probability. To our knowledge, this is the first work that provides a convergence analysis of the first-order adversaries. Moreover, our analysis demonstrates that, in the initial phase of adversarial training, the scale of the inputs matters in the sense that a smaller input scale leads to faster convergence of adversarial training and a “more regular” landscape. Finally, we show that these theoretical findings are in excellent agreement with a series of experiments.« less
  4. A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used tomore »identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b ∗ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b ∗ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b ∗ model to date.« less
    Free, publicly-accessible full text available April 1, 2023
  5. Free, publicly-accessible full text available March 1, 2023
  6. Free, publicly-accessible full text available January 1, 2023
  7. A bstract A search for a heavy resonance decaying to a top quark and a W boson in the fully hadronic final state is presented. The analysis is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb − 1 recorded by the CMS experiment at the LHC. The search is focused on heavy resonances, where the decay products of each top quark or W boson are expected to be reconstructed as a single, large-radius jet with a distinct substructure. The production of an excited bottom quark, b *more », is used as a benchmark when setting limits on the cross section for a heavy resonance decaying to a top quark and a W boson. The hypotheses of b * quarks with left-handed, right-handed, and vector-like chiralities are excluded at 95% confidence level for masses below 2.6, 2.8, and 3.1 TeV, respectively. These are the most stringent limits on the b * quark mass to date, extending the previous best limits by almost a factor of two.« less
    Free, publicly-accessible full text available December 1, 2022