skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2025
  2. Resource limitations make it challenging to provide all students with one of the most effec- tive educational interventions: personalized instruction. Reinforcement learning could be a pivotal tool to decrease the development costs and enhance the effectiveness of intelligent tutoring software, that aims to provide the right support, at the right time, to a student. Here we illustrate that deep reinforcement learning can be used to provide adaptive peda- gogical support to students learning about the concept of volume in a narrative storyline software. Using explainable artificial intelligence tools, we extracted interpretable insights about the pedagogical policy learned and demonstrated that the resulting policy had simi- lar performance in a different student population. Most importantly, in both studies, the reinforcement-learning narrative system had the largest benefit for those students with the lowest initial pretest scores, suggesting the opportunity for AI to adapt and provide support for those most in need. 
    more » « less
  3. Abstract The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton water Cherenkov neutrino detector installed on the Booster Neutrino Beam (BNB) at Fermilab. Its main physics goals are to perform a measurement of the neutron yield from neutrino-nucleus interactions, as well as a measurement of the charged-current cross section of muon neutrinos. An equally important focus is the research and development of new detector technologies and target media. Specifically, water-based liquid scintillator (WbLS) is of interest as a novel detector medium, as it allows for the simultaneous detection of Cherenkov light and scintillation. This paper presents the deployment of a 366 L WbLS vessel in ANNIE in March 2023 and the subsequent detection of both Cherenkov light and scintillation from the WbLS. This proof-of-concept allows for the future development of reconstruction and particle identification algorithms in ANNIE, as well as dedicated analyses within the WbLS volume, such as the search for neutral-current events and the hadronic scintillation component. 
    more » « less
  4. null (Ed.)