Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry–reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.more » « less
-
Reconciling the total carbon budget for boreal forest wildfire emissions using airborne observationsWildfire impacts on air quality and climate are expected to be exacerbatedby climate change with the most pronounced impacts in the boreal biome.Despite the large geographic coverage, there is limited information onboreal forest wildfire emissions, particularly for organic compounds, whichare critical inputs for air quality model predictions of downwind impacts.In this study, airborne measurements of 193 compounds from 15 instruments,including 173 non-methane organics compounds (NMOG), were used to providethe most detailed characterization, to date, of boreal forest wildfireemissions. Highly speciated measurements showed a large diversity ofchemical classes highlighting the complexity of emissions. Usingmeasurements of the total NMOG carbon (NMOGT), the ΣNMOG wasfound to be 50 % ± 3 % to 53 % ± 3 % of NMOGT, of which, theintermediate- and semi-volatile organic compounds (I/SVOCs) were estimatedto account for 7 % to 10 %. These estimates of I/SVOC emission factorsexpand the volatility range of NMOG typically reported. Despite extensivespeciation, a substantial portion of NMOGT remained unidentified(47 % ± 15 % to 50 % ± 15 %), with expected contributions from morehighly-functionalized VOCs and I/SVOCs. The emission factors derived in thisstudy improve wildfire chemical speciation profiles and are especiallyrelevant for air quality modelling of boreal forest wildfires. Theseaircraft-derived emission estimates were further linked with those derivedfrom satellite observations demonstrating their combined value in assessingvariability in modelled emissions. These results contribute to theverification and improvement of models that are essential for reliablepredictions of near-source and downwind pollution resulting from borealforest wildfires.more » « less
-
null (Ed.)Asphalt-based materials are abundant and a major nontraditional source of reactive organic compounds in urban areas, but their emissions are essentially absent from inventories. At typical temperature and solar conditions simulating different life cycle stages (i.e., storage, paving, and use), common road and roofing asphalts produced complex mixtures of organic compounds, including hazardous pollutants. Chemically speciated emission factors using high-resolution mass spectrometry reveal considerable oxygen and reduced sulfur content and the predominance of aromatic (~30%) and intermediate/semivolatile organic compounds (~85%), which together produce high overall secondary organic aerosol (SOA) yields. Emissions rose markedly with moderate solar exposure (e.g., 300% for road asphalt) with greater SOA yields and sustained SOA production. On urban scales, annual estimates of asphalt-related SOA precursor emissions exceed those from motor vehicles and substantially increase existing estimates from noncombustion sources. Yet, their emissions and impacts will be concentrated during the hottest, sunniest periods with greater photochemical activity and SOA production.more » « less
-
null (Ed.)Abstract. Forest fires are major contributors of reactive gas- and particle-phaseorganic compounds to the atmosphere. We used offline high-resolution tandemmass spectrometry to perform a molecular-level speciation of gas- andparticle-phase compounds sampled via aircraft from an evolving boreal forestfire smoke plume in Saskatchewan, Canada. We observed diversemultifunctional compounds containing oxygen, nitrogen, and sulfur (CHONS),whose structures, formation, and impacts are understudied. Thedilution-corrected absolute ion abundance of particle-phase CHONS compoundsincreased with plume age by a factor of 6.4 over the first 4 h ofdownwind transport, and their relative contribution to the observedfunctionalized organic aerosol (OA) mixture increased from 19 % to 40 %.The dilution-corrected absolute ion abundance of particle-phase compoundswith sulfide functional groups increased by a factor of 13 with plume age,and their relative contribution to observed OA increased from 4 % to40 %. Sulfides were present in up to 75 % of CHONS compounds and theincreases in sulfides were accompanied by increases in ring-bound nitrogen;both increased together with CHONS prevalence. A complex mixture ofintermediate- and semi-volatile gas-phase organic sulfur species wasobserved in emissions from the fire and depleted downwind, representingpotential precursors to particle-phase CHONS compounds. These resultsdemonstrate CHONS formation from nitrogen- and oxygen-containing biomass burningemissions in the presence of reduced sulfur species. In addition, theyhighlight chemical pathways that may also be relevant in situations withelevated emissions of nitrogen- and sulfur-containing organic compounds fromresidential biomass burning and fossil fuel use (e.g., coal), respectively.more » « less
An official website of the United States government
