skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 18, 2026
  2. The hadrochemistry of bottom quarks (b) produced in hadronic collisions encodes valuable information on the mechanism of color neutralization in these reactions. Since the b-quark mass is much larger than the typical hadronic scale of 1 GeV, bbar pair production is expected to be well separated from subsequent hadronization processes. A significantly larger fraction of b baryons has been observed in proton-proton (pp) and proton-antiproton (pbarp) reactions relative to eþe2 collisions, challenging theoretical descriptions. We address this problem by employing a statistical hadronization approach with an augmented set of b-hadron states beyond currently measured ones, guided by the relativistic quark model and lattice-QCD computations. Assuming relative chemical equilibrium between different b-hadron yields, thermal densities are used as fragmentation weights of b quarks into various hadron species. With quark model estimates of the decay patterns of excited states, the fragmentation fractions of weakly decaying b hadrons are computed and found to agree with measurements in pbarp collisions at the Tevatron. By combining transverse-momentum (pT) distributions of b quarks from perturbative QCD with thermal weights and independent fragmentation toward high pT, a fair description of the pT-dependent B-meson ratios measured in pp collisions at the LHC is obtained. The observed enhancement of Lambda_b attributed to the feeddown from thus far unobserved excited b baryons. Finally, we implement the hadrochemistry into a strongly coupled transport approach for b quarks in heavy-ion collisions, utilizing previously determined b-quark transport coefficients in the quark-gluon plasma, to highlight the modifications of hadrochemistry and collective behavior of b hadrons in Pb-Pb collisions at the LHC. 
    more » « less
  3. Heavy-flavor hadrons produced in ultrarelativistic heavy-ion collisions are a sensitive probe for studying hadronization mechanisms of the quark-gluon-plasma. In this paper, we survey how different transport models for the simulation of heavy-quark diffusion through a quark-gluon plasma in heavy-ion collisions implement hadronization and how this affects final state observables. Utilizing the same input charm-quark distribution in all models at the hadronization transition, we find that the transverse-momentum dependence of the nuclear modification factor of various charm hadron species has significant sensitivity to the hadronization scheme. In addition, the charm-hadron elliptic flow exhibits a nontrivial dependence on the elliptic flow of the hadronizing partonic medium. 
    more » « less
  4. Kim, Y.; Moon, D.H. (Ed.)
    We deploy a kinetic-rate equation to evaluate the transport of J /ψ, ψ(2 S ), B c and X (3872) in ultrarelativistic heavy-ion collisions and compare their production yields to experimental data from the Large Hadron Collider. The rate equation has two main transport parameters: the equilibrium limit and reaction rate for each state. The temperature-dependent equilibrium limits include charm- and bottom-quark fugacities based on their initial production. The reaction rates for charmonia, bottomonia and B c rely on charm- and bottomquark masses and binding energies from a thermodynamic T -matrix approach. For the X (3872) particle, internal structure information is encoded in reaction rates and initial conditions in the hadronic phase via two different scenarios: a loosely bound hadronic molecule vs. a compact tetraquark. 
    more » « less