skip to main content


Search for: All records

Creators/Authors contains: "He, Qiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Planting has been widely adopted to battle the loss of salt marshes and to establish living shorelines. However, the drivers of success in salt marsh planting and their ecological effects are poorly understood at the global scale. Here, we assemble a global database, encompassing 22,074 observations reported in 210 studies, to examine the drivers and impacts of salt marsh planting. We show that, on average, 53% of plantings survived globally, and plant survival and growth can be enhanced by careful design of sites, species selection, and novel planted technologies. Planting enhances shoreline protection, primary productivity, soil carbon storage, biodiversity conservation and fishery production (effect sizes = 0.61, 1.55, 0.21, 0.10 and 1.01, respectively), compared with degraded wetlands. However, the ecosystem services of planted marshes, except for shoreline protection, have not yet fully recovered compared with natural wetlands (effect size = −0.25, 95% CI −0.29, −0.22). Fortunately, the levels of most ecological functions related to climate change mitigation and biodiversity increase with plantation age when compared with natural wetlands, and achieve equivalence to natural wetlands after 5–25 years. Overall, our results suggest that salt marsh planting could be used as a strategy to enhance shoreline protection, biodiversity conservation and carbon sequestration.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.

     

    more » « less
    Free, publicly-accessible full text available January 17, 2025
  4. Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.

     
    more » « less
    Free, publicly-accessible full text available November 3, 2024
  5. Free, publicly-accessible full text available November 1, 2024
  6. Abstract Purpose of Review

    Preparing for pandemics requires a degree of interdisciplinary work that is challenging under the current paradigm. This review summarizes the challenges faced by the field of pandemic science and proposes how to address them.

    Recent Findings

    The structure of current siloed systems of research organizations hinders effective interdisciplinary pandemic research. Moreover, effective pandemic preparedness requires stakeholders in public policy and health to interact and integrate new findings rapidly, relying on a robust, responsive, and productive research domain. Neither of these requirements are well supported under the current system.

    Summary

    We propose a new paradigm for pandemic preparedness wherein interdisciplinary research and close collaboration with public policy and health practitioners can improve our ability to prevent, detect, and treat pandemics through tighter integration among domains, rapid and accurate integration, and translation of science to public policy, outreach and education, and improved venues and incentives for sustainable and robust interdisciplinary work.

     
    more » « less
  7. Abstract Effective utilization of wild relatives is key to overcoming challenges in genetic improvement of cultivated tomato, which has a narrow genetic basis; however, current efforts to decipher high-quality genomes for tomato wild species are insufficient. Here, we report chromosome-scale tomato genomes from nine wild species and two cultivated accessions, representative of Solanum section Lycopersicon , the tomato clade. Together with two previously released genomes, we elucidate the phylogeny of Lycopersicon and construct a section-wide gene repertoire. We reveal the landscape of structural variants and provide entry to the genomic diversity among tomato wild relatives, enabling the discovery of a wild tomato gene with the potential to increase yields of modern cultivated tomatoes. Construction of a graph-based genome enables structural-variant-based genome-wide association studies, identifying numerous signals associated with tomato flavor-related traits and fruit metabolites. The tomato super-pangenome resources will expedite biological studies and breeding of this globally important crop. 
    more » « less