Thin film evaporation is a widely-used thermal management solution for micro/nano-devices with high energy densities. Local measurements of the evaporation rate at a liquid-vapor interface, however, are limited. We present a continuous profile of the evaporation heat transfer coefficient (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ) in the submicron thin film region of a water meniscus obtained through local measurements interpreted by a machine learned surrogate of the physical system. Frequency domain thermoreflectance (FDTR), a non-contact laser-based method with micrometer lateral resolution, is used to induce and measure the meniscus evaporation. A neural network is then trained using finite element simulations to extract the$$h_{\text {evap}}$$ profile from the FDTR data. For a substrate superheat of 20 K, the maximum$$h_{\text {evap}}$$ is$$h_{\text {evap}}$$ MW/$$1.0_{-0.3}^{+0.5}$$ -K at a film thickness of$$\text {m}^2$$ nm. This ultrahigh$$15_{-3}^{+29}$$ value is two orders of magnitude larger than the heat transfer coefficient for single-phase forced convection or evaporation from a bulk liquid. Under the assumption of constant wall temperature, our profiles of$$h_{\text {evap}}$$ and meniscus thickness suggest that 62% of the heat transfer comes from the region lying 0.1–1 μm from the meniscus edge, whereas just 29% comes from the next 100 μm.$$h_{\text {evap}}$$ -
NASA's New Horizons mission unveiled a diverse landscape of Pluto's surface with massive regions being neutral in color, while others like Cthulhu Macula range from golden-yellow to reddish comprising up to half of Pluto's carbon budget. Here, we demonstrate in laboratory experiments merged with electronic structure calculations that the photolysis of solid acetylene – the most abundant precipitate on Pluto's surface – by low energy ultraviolet photons efficiently synthesizes benzene and polycyclic aromatic hydrocarbons via excited state photochemistry thus providing critical molecular building blocks for the colored surface material. Since low energy photons deliver doses to Pluto's surface exceeding those from cosmic rays by six orders of magnitude, these processes may significantly contribute to the coloration of Pluto's surface and of hydrocarbon-covered surfaces of Solar System bodies such as Triton in general. This discovery critically enhances our perception of the distribution of aromatic molecules and carbon throughout our Solar System.more » « less