skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Xiaoqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Silanes are important in chemistry and material science. The self‐redistribution of HSiCl3is an industrial process to prepare SiH4, which is widely used in electronics and automobile industries. However, selective silane cross‐redistribution to prepare advanced silanes is challenging. We now report an enthalpy‐driven silane cross‐redistribution to access bis‐silanes that contain two different types of Si−H bonds in the same molecule. Compared with entropy‐driven reactions, the enthalpy‐driven reaction shows high regioselectivity, broad substrate scope (62 examples) and high atom economy. Our combined experimental and computational study indicates that the reaction proceeds through a Ni0‐NiII‐NiIVcatalytic cycle. 
    more » « less