Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Collaborative filtering (CF) has been proven to be one of the most effective techniques for recommendation. Among all CF approaches, SimpleX is the state-of-the-art method that adopts a novel loss function and a proper number of negative samples. However, there is no work that optimizes SimpleX on multi-core CPUs, leading to limited performance. To this end, we perform an in-depth profiling and analysis of existing SimpleX implementations and identify their performance bottlenecks including (1) irregular memory accesses, (2) unnecessary memory copies, and (3) redundant computations. To address these issues, we propose an efficient CF training system (called HEAT) that fully enables the multi-level caching and multi-threading capabilities of modern CPUs. Specifically, the optimization of HEAT is threefold: (1) It tiles the embedding matrix to increase data locality and reduce cache misses (thus reduce read latency); (2) It optimizes stochastic gradient descent (SGD) with sampling by parallelizing vector products instead of matrix-matrix multiplications, in particular the similarity computation therein, to avoid memory copies for matrix data preparation; and (3) It aggressively reuses intermediate results from the forward phase in the backward phase to alleviate redundant computation. Evaluation on five widely used datasets with both x86- and ARM-architecture processors shows that HEATmore »Free, publicly-accessible full text available June 21, 2024
-
Free, publicly-accessible full text available May 1, 2024
-
Interactive web services increasingly drive critical business workloads such as search, advertising, games, shopping, and finance. Whereas optimizing parallel programs and distributed server systems have historically focused on average latency and throughput, the primary metric for interactive applications is instead consistent responsiveness, i.e., minimizing the number of requests that miss a target latency. This paper is the first to show how to generalize work-stealing, which is traditionally used to minimize the makespan of a single parallel job, to optimize for a target latency in interactive services with multiple parallel requests. We design a new adaptive work stealing policy, called tail-control, that reduces the number of requests that miss a target latency. It uses instantaneous request progress, system load, and a target latency to choose when to parallelize requests with stealing, when to admit new requests, and when to limit parallelism of large requests. We implement this approach in the Intel Thread Building Block (TBB) library and evaluate it on real-world workloads and synthetic workloads. The tail-control policy substantially reduces the number of requests exceeding the desired target latency and delivers up to 58% relative improvement over various baseline policies. This generalization of work stealing for multiple requests effectively optimizes themore »