skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Heald, Steve M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transition metal spinel oxides comprised of earth-abundant Mn and Co have long been explored for their use in catalytic reactions and energy storage. However, understanding functional properties can be challenging due to differences in sample preparation and the ultimate structural properties of the materials. Epitaxial thin film synthesis provides a novel means of producing precisely controlled materials to explore the variations reported in the literature. In this work, MnxCo3−xO4 samples from x = 0 to x = 1.28 were synthesized through molecular beam epitaxy and characterized to develop a material properties map as a function of stoichiometry. Films were characterized via in situ x-ray photoelectron spectroscopy, x-ray diffraction, scanning transmission electron microscopy, and polarized K-edge x-ray absorption spectroscopy. Mn cations within this range were found to be octahedrally coordinated, in line with an inverse spinel structure. Samples largely show mixed Mn3+ and Mn4+ character with evidence of phase segregation tendencies with the increasing Mn content and increasing Mn3+ formal charge. Phase segregation may occur due to structural incompatibility between cubic and tetragonal crystal structures associated with Mn4+ and Jahn–Teller active Mn3+ octahedra, respectively. Our results help in explaining the reported differences across samples in these promising materials for renewable energy technologies. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. 4d transition metal oxides have emerged as promising materials for numerous applications including high mobility electronics. SrNbO3 is one such candidate material, serving as a good donor material in interfacial oxide systems and exhibiting high electron mobility in ultrathin films. However, its synthesis is challenging due to the metastable nature of the d1 Nb4+ cation and the limitations in the delivery of refractory Nb. To date, films have been grown primarily by pulsed laser deposition (PLD), but development of a means to grow and stabilize the material via molecular beam epitaxy (MBE) would enable studies of interfacial phenomena and multilayer structures that may be challenging by PLD. To that end, SrNbO3 thin films were grown using hybrid MBE for the first time using a tris(diethylamido)(tert-butylimido) niobium precursor for Nb and an elemental Sr source on GdScO3 substrates. Varying thicknesses of insulating SrHfO3 capping layers were deposited using a hafnium tert-butoxide precursor for Hf on top of SrNbO3 films to preserve the metastable surface. Grown films were transferred in vacuo for x-ray photoelectron spectroscopy to quantify elemental composition, density of states at the Fermi energy, and Nb oxidation state. Ex situ studies by x-ray absorption near edge spectroscopy and scanning transmission electron microscopy illustrate that the SrHfO3 capping plays an important role in preserving the crystalline quality of the material and the Nb 4d1 metastable charge state under atmospheric conditions.

    more » « less
  3. null (Ed.)
  4. null (Ed.)