skip to main content

Search for: All records

Creators/Authors contains: "Hearin, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We introduce a new model of the evolution of the concentration of dark matter haloes, c(t). For individual haloes, our model approximates c(t) as a power law with a time-dependent index, such that at early times, concentration has a nearly constant value of c ≈ 3–4, and as cosmic time progresses, c(t) smoothly increases. Using large samples of halo merger trees taken from the Bolshoi–Planck and MultiDark Planck 2 cosmological simulations, we demonstrate that our three-parameter model can approximate the evolution of the concentration of individual haloes with a typical accuracy of 0.1 dex for $t\gtrsim 2\, {\rm Gyr}$ for all Bolshoi–Planck and MultiDark Planck 2 haloes of present-day peak mass $M_{0}\gtrsim 10^{11.5}\, {\rm M}_{\odot }$. We additionally present a new model of the evolution of the concentration of halo populations, which we show faithfully reproduces both average concentration growth and the diversity of smooth trajectories of c(t), including capturing correlations with halo mass and halo assembly history. Our publicly available source code, diffprof, can be used to generate Monte Carlo realizations of the concentration histories of cosmologically representative halo populations. diffprof is differentiable due to its implementation in the jax autodiff library, which facilitates the incorporation of our model into existing analytical halo model frameworks.

    more » « less

    We present an investigation into a hitherto unexplored systematic that affects the accuracy of galaxy cluster mass estimates with weak gravitational lensing. Specifically, we study the covariance between the weak lensing signal, ΔΣ, and the ‘true’ cluster galaxy number count, Ngal, as measured within a spherical volume that is void of projection effects. By quantifying the impact of this covariance on mass calibration, this work reveals a significant source of systematic uncertainty. Using the MDPL2 simulation with galaxies traced by the SAGE semi-analytic model, we measure the intrinsic property covariance between these observables within the three-dimensional vicinity of the cluster, spanning a range of dynamical mass and redshift values relevant for optical cluster surveys. Our results reveal a negative covariance at small radial scales (R ≲ R200c) and a null covariance at large scales (R ≳ R200c) across most mass and redshift bins. We also find that this covariance results in a $2{\!-\!}3~{{\ \rm per\ cent}}$ bias in the halo mass estimates in most bins. Furthermore, by modelling Ngal and ΔΣ as multi-(log)-linear equations of secondary halo properties, we provide a quantitative explanation for the physical origin of the negative covariance at small scales. Specifically, we demonstrate that the Ngal–ΔΣ covariance can be explained by the secondary properties of haloes that probe their formation history. We attribute the difference between our results and the positive bias seen in other works with (mock)-cluster finders to projection effects. These findings highlight the importance of accounting for the covariance between observables in cluster mass estimation, which is crucial for obtaining accurate constraints on cosmological parameters.

    more » « less

    We present a simple, differentiable method for predicting emission line strengths from rest-frame optical continua using an empirically determined mapping. Extensive work has been done to develop mock galaxy catalogues that include robust predictions for galaxy photometry, but reliably predicting the strengths of emission lines has remained challenging. Our new mapping is a simple neural network implemented using the JAX Python automatic differentiation library. It is trained on Dark Energy Spectroscopic Instrument Early Release data to predict the equivalent widths (EWs) of the eight brightest optical emission lines (including H α, H β, [O ii], and [O iii]) from a galaxy’s rest-frame optical continuum. The predicted EW distributions are consistent with the observed ones when noise is accounted for, and we find Spearman’s rank correlation coefficient ρs > 0.87 between predictions and observations for most lines. Using a non-linear dimensionality reduction technique, we show that this is true for galaxies across the full range of observed spectral energy distributions. In addition, we find that adding measurement uncertainties to the predicted line strengths is essential for reproducing the distribution of observed line-ratios in the BPT diagram. Our trained network can easily be incorporated into a differentiable stellar population synthesis pipeline without hindering differentiability or scalability with GPUs. A synthetic catalogue generated with such a pipeline can be used to characterize and account for biases in the spectroscopic training sets used for training and calibration of photo-z’s, improving the modelling of systematic incompleteness for the Rubin Observatory LSST and other surveys.

    more » « less

    Models of stellar population synthesis (SPS) are the fundamental tool that relates the physical properties of a galaxy to its spectral energy distribution (SED). In this paper, we present DSPS: a python package for SPS. All of the functionality in DSPS is implemented natively in the JAX library for automatic differentiation, and so our predictions for galaxy photometry are fully differentiable, and directly inherit the performance benefits of JAX, including portability onto GPUs. DSPS also implements several novel features, such as i) a flexible empirical model for stellar metallicity that incorporates correlations with stellar age, ii) support for the Diffstar model that provides a physically-motivated connection between the star formation history of a galaxy (SFH) and the mass assembly of its underlying dark matter halo. We detail a set of theoretical techniques for using autodiff to calculate gradients of predictions for galaxy SEDs with respect to SPS parameters that control a range of physical effects, including SFH, stellar metallicity, nebular emission, and dust attenuation. When forward modelling the colours of a synthetic galaxy population, we find that DSPS can provide a factor of 5 speed-up over standard SPS codes on a CPU, and a factor of 300-400 on a modern GPU. When coupled with gradient-based techniques for optimization and inference, DSPS makes it practical to conduct expansive likelihood analyses of simulation-based models of the galaxy–halo connection that fully forward model galaxy spectra and photometry.

    more » « less

    We present Diffstar , a smooth parametric model for the in situ star formation history (SFH) of galaxies. The Diffstar model is distinct from traditional SFH models because it is parametrized directly in terms of basic features of galaxy formation physics. Diffstar includes ingredients for: the halo mass assembly history; the accretion of gas into the dark matter halo; the fraction of gas that is eventually transformed into stars, ϵms; the time-scale over which this transformation occurs, τcons; and the possibility that some galaxies will experience a quenching event at time tq, and may subsequently experience rejuvenated star formation. We show that our model is sufficiently flexible to describe the average stellar mass histories of galaxies in both the IllustrisTNG (TNG) and UniverseMachine (UM) simulations with an accuracy of ∼0.1 dex across most of cosmic time. We use Diffstar to compare TNG to UM in common physical terms, finding that: (i) star formation in UM is less efficient and burstier relative to TNG; (ii) UM galaxies have longer gas consumption time-scales, relative to TNG; (iii) rejuvenated star formation is ubiquitous in UM, whereas quenched TNG galaxies rarely experience sustained rejuvenation; and (iv) in both simulations, the distributions of ϵms, τcons, and tq share a common characteristic dependence upon halo mass, and present significant correlations with halo assembly history. We conclude with a discussion of how Diffstar can be used in future applications to fit the SEDs of individual observed galaxies, as well as in forward-modelling applications that populate cosmological simulations with synthetic galaxies.

    more » « less

    We present a novel simulation-based cosmological analysis of galaxy–galaxy lensing and galaxy redshift-space clustering. Compared to analysis methods based on perturbation theory, our simulation-based approach allows us to probe a much wider range of scales, $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, including highly non-linear scales, and marginalizes over astrophysical effects such as assembly bias. We apply this framework to data from the Baryon Oscillation Spectroscopic Survey LOWZ sample cross-correlated with state-of-the-art gravitational lensing catalogues from the Kilo Degree Survey and the Dark Energy Survey. We show that gravitational lensing and redshift-space clustering when analysed over a large range of scales place tight constraints on the growth-of-structure parameter $S_8 = \sigma _8 \sqrt{\Omega _{\rm m} / 0.3}$. Overall, we infer S8 = 0.792 ± 0.022 when analysing the combination of galaxy–galaxy lensing and projected galaxy clustering and S8 = 0.771 ± 0.027 for galaxy redshift-space clustering. These findings highlight the potential constraining power of full-scale studies over studies analysing only large scales and also showcase the benefits of analysing multiple large-scale structure surveys jointly. Our inferred values for S8 fall below the value inferred from the CMB, S8 = 0.834 ± 0.016. While this difference is not statistically significant by itself, our results mirror other findings in the literature whereby low-redshift large-scale structure probes infer lower values for S8 than the CMB, the so-called S8-tension.

    more » « less

    Secondary halo properties beyond mass, such as the mass accretion rate (MAR), concentration, and the half mass scale, are essential in understanding the formation of large-scale structure and dark matter haloes. In this paper, we study the impact of secondary halo properties on the galaxy-galaxy lensing observable, ΔΣ. We build an emulator trained on N-body simulations to model ΔΣ and quantify the impact of different secondary parameters on the ΔΣ profile. We focus on the impact of MAR on ΔΣ. We show that a 3σ detection of variations in MAR at fixed halo mass could be achieved with the Hyper Suprime Cam survey assuming no baryonic effects and a proxy for MAR with scatter <1.5. We show that the full radial profile of ΔΣ depends on secondary properties at fixed halo mass. Consequently, an emulator that can perform full shape fitting yields better than two times improvement upon the constraints on MAR than only using the outer part of the halo. Finally, we highlight that miscentring and MAR impact the radial profile of ΔΣ in a similar fashion, implying that miscentring and MAR need to be modelled jointly for unbiased estimates of both effects. We show that present-day lensing data sets have the statistical capability to place constraints on halo MAR within our assumptions. Our analysis opens up new possibilities for observationally measuring the assembly history of the dark matter haloes that host galaxies and clusters.

    more » « less
  8. ABSTRACT We use a simulation-based modelling approach to analyse the anisotropic clustering of the BOSS LOWZ sample over the radial range $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, significantly extending what is possible with a purely analytic modelling framework. Our full-scale analysis yields constraints on the growth of structure that are a factor of two more stringent than any other study on large scales at similar redshifts. We infer fσ8 = 0.471 ± 0.024 at $z$ ≈ 0.25, and fσ8 = 0.430 ± 0.025 at $z$ ≈ 0.40; the corresponding ΛCDM predictions of the Planck cosmic microwave background (CMB) analysis are 0.470 ± 0.006 and 0.476 ± 0.005, respectively. Our results are thus consistent with Planck, but also follow the trend seen in previous low-redshift measurements of fσ8 falling slightly below the ΛCDM + CMB prediction. We find that small- and large-radial scales yield mutually consistent values of fσ8, but there are 1−2.5σ hints of small scales ($\lt 10 \, h^{-1} \, \mathrm{Mpc}$) preferring lower values for fσ8 relative to larger scales. We analyse the constraining power of the full range of radial scales, finding that most of the multipole information about fσ8 is contained in the scales $2 \, h^{-1} \, \mathrm{Mpc}\lesssim s \lesssim 20 \, h^{-1} \, \mathrm{Mpc}$. Evidently, once the cosmological information of the quasi-to-nonlinear regime has been harvested, large-scale modes contain only modest additional information about structure growth. Finally, we compare predictions for the galaxy–galaxy lensing amplitude of the two samples against measurements from SDSS and assess the lensing-is-low effect in light of our findings. 
    more » « less
  9. null (Ed.)
    ABSTRACT The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M* > 107 M⊙ and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M* < 107 M⊙ or M1500 > −17). For reionization models, extrapolating luminosity functions with a constant faint-end slope from M1500 = −17 down to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼ 12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online. 
    more » « less
  10. null (Ed.)
    ABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where $M_{\star } \propto M_{\rm vir}^{\alpha }$. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in $M_\star \sim 10^{9-10} \, \mathrm{M}_{\odot }$ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations. 
    more » « less