Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral-associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models.more » « less
-
Abstract Soil organic matter (SOM) is the largest terrestrial pool of organic carbon, and potential carbon-climate feedbacks involving SOM decomposition could exacerbate anthropogenic climate change. However, our understanding of the controls on SOM mineralization is still incomplete, and as such, our ability to predict carbon-climate feedbacks is limited. To improve our understanding of controls on SOM decomposition, A and upper B horizon soil samples from 26 National Ecological Observatory Network (NEON) sites spanning the conterminous U.S. were incubated for 52 weeks under conditions representing site-specific mean summer temperature and sample-specific field capacity (−33 kPa) water potential. Cumulative carbon dioxide respired was periodically measured and normalized by soil organic C content to calculate cumulative specific respiration (CSR), a metric of SOM vulnerability to mineralization. The Boruta algorithm, a feature selection algorithm, was used to select important predictors of CSR from 159 variables. A diverse suite of predictors was selected (12 for A horizons, 7 for B horizons) with predictors falling into three categories corresponding to SOM chemistry, reactive Fe and Al phases, and site moisture availability. The relationship between SOM chemistry predictors and CSR was complex, while sites that had greater concentrations of reactive Fe and Al phases or were wetter had lower CSR. Only three predictors were selected for both horizon types, suggesting dominant controls on SOM decomposition differ by horizon. Our findings contribute to the emerging consensus that a broad array of controls regulates SOM decomposition at large scales and highlight the need to consider changing controls with depth.
-
Abstract A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full‐factorial 1‐m3mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land‐use‐induced changes in peatland hydrology can increase the vulnerability of peatland C stores.
-
Summary Dead fungal mycelium (necromass) represents a critical component of soil carbon (C) and nutrient cycles. Assessing how the microbial communities associated with decomposing fungal necromass change as global temperatures rise will help in determining how these belowground organic matter inputs contribute to ecosystem responses.
In this study, we characterized the structure of bacterial and fungal communities associated with multiple types of decaying mycorrhizal fungal necromass incubated within mesh bags across a 9°C whole ecosystem temperature enhancement in a boreal peatland.
We found major taxonomic and functional shifts in the microbial communities present on decaying mycorrhizal fungal necromass in response to warming. These changes were most pronounced in hollow microsites, which showed convergence towards the necromass‐associated microbial communities present in unwarmed hummocks. We also observed a high colonization of ericoid mycorrhizal fungal necromass by fungi from the same genera as the necromass.
These results indicate that microbial communities associated with mycorrhizal fungal necromass decomposition are likely to change significantly with future climate warming, which may have strong impacts on soil biogeochemical cycles in peatlands. Additionally, the high enrichment of congeneric fungal decomposers on ericoid mycorrhizal necromass may help to explain the increase in ericoid shrub dominance in warming peatlands.
-
Abstract Fungi represent a rapidly cycling pool of carbon (C) and nitrogen (N) in soils. Understanding of how this pool impacts soil nutrient availability and organic matter fluxes is hindered by uncertainty regarding the dynamics and drivers of fungal necromass decomposition.
Here we assessed the generality of common models for predicting mass loss during fungal necromass decomposition and linked the resulting parameters to necromass substrate chemistry. We decomposed 28 different types of fungal necromass in laboratory microcosms over a 90‐day period, measuring mass loss on all types, and N release on a subset of types. We characterised the initial chemistry of each necromass type using: (a) fibre analysis methods commonly used for plant tissues, (b) initial melanin and nitrogen (N) concentrations and (c) Fourier transform infrared (FTIR) spectroscopy to assess the presence of bonds associated with common biomolecules.
We found universal support for an asymptotic model of decomposition, which assumes that fungal necromass consists of an exponentially decomposing ‘fast’ pool, and a ‘slow’ pool that decomposes at a rate approaching zero. The strongest predictor of the fast pool decay rate (
k ) was the proportion of cell soluble components, though initial N concentration also predictedk , albeit more weakly. The size of the slow pool was best predicted by the acid non‐hydrolysable fraction, which was positively correlated with melanin‐associated aromatics. Nitrogen dynamics varied by necromass type, ranging from net N release to net immobilisation. The maximum quantity of N immobilised was inversely related to cell soluble contents andk , as positively related to FTIR spectra associated with cell wall polysaccharides.Collectively, our results indicate that the decomposition of fungal necromass in soils can be described as having two distinct stages that are driven by different components of substrate C chemistry, with implications for rates of N availability and organic matter accumulation in soils.
A free
Plain Language Summary can be found within the Supporting Information of this article.