skip to main content

Search for: All records

Creators/Authors contains: "Hedges, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. InAs quantum dots (QDs) embedded into a waveguiding GaAs semiconductor matrix may produce scintillation detectors with exceptional speed and yield, making them valuable for nuclear security, medical imaging, and high energy physics applications. In this work, we developed thick (~25um) epitaxial heterostructres with high luminescence efficiency composed of self-assembled nano-engineered InAs QDs grown by molecular beam epitaxy. The bulk GaAs acts as a stopping material for incident particles and as a waveguide when layer-transferred onto a low-index substrate. Waveguiding and self-absorption (<1cm-1) were studied using photoluminescence with scanning laser excitation and modeled with ray optics approximation and geometrical coupling ofmore »high-index waveguide to a collection fiber. Scintillating signals from alpha-particles were analyzed with an external photodiode (PD) and an integrated PD which provided an improved optical coupling. The mean charge collected by the integrated PD corresponded to 5×1e4 photoelectrons per 1 MeV of deposited energy, or ~20% of the theoretically achievable light yield. Combined with the previously measured QD scintillation time of 0.3-0.6 ns, this makes the InAs/GaAs QD heterostructures the fastest high yield scintillation material reported.« less
  2. Free, publicly-accessible full text available May 1, 2023
  3. A bstract We present a search for the charged lepton-flavor-violating decays ϒ(1 S ) → ℓ ± ℓ ′ ∓ and radiative charged lepton-flavour-violating decays ϒ(1 S ) → γ ℓ ± ℓ ′ ∓ [ ℓ , ℓ ′ = e, μ, τ ] using the 158 million ϒ(2 S ) sample collected by the Belle detector at the KEKB collider. This search uses ϒ(1 S ) mesons produced in ϒ(2 S ) → π + π − ϒ(1 S ) transitions. We do not find any significant signal, so we provide upper limits on the branching fractions atmore »the 90% confidence level.« less
    Free, publicly-accessible full text available May 1, 2023
  4. Free, publicly-accessible full text available February 1, 2023
  5. Free, publicly-accessible full text available February 1, 2023
  6. Free, publicly-accessible full text available January 1, 2023
  7. A bstract We report the first measurement of the exclusive cross sections e + e − → $$ B\overline{B} $$ B B ¯ , e + e − → $$ B{\overline{B}}^{\ast } $$ B B ¯ ∗ , and e + e − → $$ {B}^{\ast }{\overline{B}}^{\ast } $$ B ∗ B ¯ ∗ in the energy range from 10 . 63 GeV to 11 . 02 GeV. The B mesons are fully reconstructed in a large number of hadronic final states and the three channels are identified using a beam-constrained-mass variable. The shapes of the exclusive cross sections showmore »oscillatory behavior with several maxima and minima. The results are obtained using data collected by the Belle experiment at the KEKB asymmetric-energy e + e − collider.« less