skip to main content


Search for: All records

Creators/Authors contains: "Hedin, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract: The importance of morphology in the phylogenomic era has recently gained attention, but relatively few studies have combined both types of information when inferring phylogenetic relationships. Sanger sequencing legacy data can also be important for understanding evolutionary relationships. The possibility of combining genomic, morphological and Sanger data in one analysis seems compelling, permitting a more complete sampling and yielding a comprehensive view of the evolution of a group. Here we used these three data types to elucidate the systematics and evolution of the Dionycha, a highly diverse group of spiders relatively underrepresented in phylogenetic studies. The datasets were analyzed separately and combined under different inference methods, including a novel approach for analyzing morphological matrices with commonly used evolutionary models. We tested alternative hypotheses of relationships and performed simulations to investigate the accuracy of our findings. We provide a comprehensive and thorough phylogenetic hypothesis for Dionycha that can serve as a robust framework to test hypotheses about the evolution of key characters. We also show that morphological data might have a phylogenetic impact, even when massively outweighed by molecular data. Our approach to analyze morphological data may serve as an alternative to the proposed practice of arbitrarily partitioning, weighting, and choosing between parsimony and stochastic models. As a result of our findings, we propose Trachycosmidae new rank for a group of Australian genera formerly included in Trochanteriidae and Gallieniellidae, and consider Ammoxenidae as a junior synonym of Gnaphosidae. We restore the family rank for Prodidomidae, but transfer the subfamily Molycriinae to Gnaphosidae. Drassinella is transferred to Liocranidae, Donuea to Corinnidae, and Mahafalytenus to Viridasiidae. 
    more » « less
  2. null (Ed.)
    Introgressive hybridization can be a powerful force impacting patterns of evolution at multiple taxonomic levels. We aimed to understand how introgression has affected speciation and diversification within a species complex of jumping spiders. The Habronattus americanus subgroup is a recently radiating group of jumping spiders, with species now in contact after hypothesized periods of isolation during glaciation cycles of the Pleistocene. Effects of introgression on genomes and morphology were investigated using phylogenomic and clustering methods using RADseq, ultraconserved elements (UCEs), and morphological data. We characterized 14 unique species/morphs using non-metric multidimensional scaling of morphological data, a majority of which were not recovered as monophyletic in our phylogenomic analyses. Morphological clusters and genetic lineages are highly incongruent, such that geographic region was a greater predictor of phylogenetic relatedness and genomic similarity than species or morph identity. STRUCTURE analyses support this pattern, revealing clusters corresponding to larger geographic regions. A history of rapid radiation in combination with frequent introgression seems to have mostly homogenized the genomes of species in this system, while selective forces maintain distinct male morphologies. GEMMA analyses support this idea by identifying SNPs correlated with distinct male morphologies. Overall, we have uncovered a system at odds with a typical bifurcating evolutionary model, instead supporting one where closely related species evolve together connected through multiple introgression events, creating a reticulate evolutionary history. 
    more » « less
  3. null (Ed.)
    It is not uncommon to find courtship displays that incorporate numerous components across different sensory modalities. We studied displays in male jumping spiders of the genus Habronattus F.O. Pickard-Cambridge, 1901, which court females using a combination of ornament and motion (dance) displays coordinated with vibrational songs. To explore the diversity in Habronattus courtship complexity, we focused on quantifying the dance and vibratory displays in nine members of the Habronattus clypeatus species group, with preliminary observations on two additional species from this group. Additionally, we looked at display variation across populations in two widespread species from this group. We document three main courtship types: “stilting”, “buzzing”, and “spinning”, each identifiable by the presence or emphasis on particular display types. We found that for the widespread species H. clypeatus (Banks, 1895), different populations differed significantly and could be classified as either stilting or buzzing types. We discuss these results in relation to broader patterns of signal evolution and diversification in Habronattus. 
    more » « less
  4. null (Ed.)
    Leptonetidae are rarely encountered spiders, usually associated with caves and mesic habitats, and are disjunctly distributed across the Holarctic. Data from ultraconserved elements (UCEs) were used in concatenated and coalescent-based analyses to estimate the phylogenetic history of the family. Our taxon sample included close outgroups, and 90% of described leptonetid genera, with denser sampling in North America and Mediterranean Europe. Two data matrices were assembled and analysed; the first ‘relaxed’ matrix includes the maximum number of loci and the second ‘strict’ matrix is limited to the same set of core orthologs but with flanking introns mostly removed. A molecular dating analysis incorporating fossil and geological calibration points was used to estimate divergence times, and dispersal–extinction–cladogenesis analysis (DEC) was used to infer ancestral distributions. Analysis of both data matrices using maximum likelihood and coalescent-based methods supports the monophyly of Archoleptonetinae and Leptonetinae. However, relationships among Archoleptonetinae, Leptonetinae, and Austrochiloidea are poorly supported and remain unresolved. Archoleptonetinae is elevated to family rank Archoleptonetidae (new rank) and Leptonetidae (new status) is restricted to include only members of the subfamily Leptonetinae; a taxonomic review with morphological diagnoses is provided for both families. Four well supported lineages within Leptonetidae (new status) are recovered: (1) the Calileptoneta group, (2) the Leptoneta group, (3) the Paraleptoneta group, and (4) the Protoleptoneta group. Most genera within Leptonetidae are monophyletic, although Barusia, Cataleptoneta, and Leptoneta include misplaced species and require taxonomic revision. The origin of Archoleptonetidae (new rank), Leptonetidae, and the four main lineages within Leptonetidae date to the Cretaceous. DEC analysis infers the Leptoneta and Paraleptoneta groups to have ancestral distributions restricted to Mediterranean Europe, whereas the Calileptoneta and Protoleptoneta groups include genera with ancestral distributions spanning eastern and western North America, Mediterranean Europe, and east Asia. Based on a combination of biology, estimated divergence times, and inferred ancestral distributions we hypothesise that Leptonetidae was once widespread across the Holarctic and their present distributions are largely the result of vicariance. Given the wide disjunctions between taxa, we broadly interpret the family as a Holarctic relict fauna and hypothesise that they were once part of the Boreotropical forest ecosystem. 
    more » « less