- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Heffron, J. (2)
-
Chandramouli, M. (1)
-
Cossette, M. (1)
-
Fidan, I. (1)
-
Jin, G. (1)
-
Jin, Ge (1)
-
Kim, T. (1)
-
Merrell, W. (1)
-
Trekles, A. (1)
-
Tu, M. (1)
-
Welsch, C. (1)
-
White, J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cybersecurity workforce development is the key to protecting information and information systems, and yet more than 30% of companies are short on security expertise. To address this need, the current authors have developed four cybersecurity education games to teach social engineering, secure online behavior, cyber defense methods, and cybersecurity first principles. These games are intended to recruit the next generation cybersecurity workforce by developing an innovative cybersecurity curriculum and pedagogical methods to provide high school students with hands-on activities in a game-based learning environment. Purdue University Northwest (PNW) offered high school summer camps for 181 high school students in June of 2016 and June of 2017. Out of 181 high school participants, 107 were underrepresented minority students, including African Americans, Hispanics, Asians, and Native Americans. To evaluate the effectiveness of the cybersecurity education games, post-camp surveys were conducted with 154 camp participants. The survey results indicated that the games were very effective in cybersecurity awareness training. Furthermore, the cybersecurity education games were more effective for male students than female students in raising student interest in computer science and cybersecurity.more » « less
-
Chandramouli, M.; Jin, G.; Heffron, J.; Cossette, M.; Fidan, I.; Merrell, W.; Welsch, C. (, ASEE Annual Conference proceedings)There is an imminent need to remedy the ‘skills gaps’ in the digital manufacturing (DM) sector as evident from the Bureau of Labor Statistics projections pointing to a decline in traditional manufacturing jobs accompanied by marked growth in digital- and computer-driven manufacturing jobs. With proven advantages such as cost benefits, material conservation, minimized labor, and enhanced precision, manufacturing industries worldwide are adapting to digital manufacturing standards on a large scale. In an effort to remedy the lack of well-defined DM career pathways and instructional framework, our NSF ATE (Advanced Technological Education) project MANEUVER (Manufacturing Education Using Virtual Environment Resources) is developing an innovative pedagogical approach using virtual reality (VR). This multimodal VR framework DM instruction targeted at 2-year and 4-year manufacturing programs, facilitates the development of VR modules for multiple modes such as desktop VR, Augmented VR, and Immersive VR. The advantages of the virtual reality framework for digital manufacturing education include: significant cost reduction, reduction in equipment and maintenance costs, ability to pre-visualize the product before manufacturing. This paper introduces the design and development process of VR education tool to simulate three different additive manufacturing machines, e.g., LutzBot™, FormLabs™, and UPrint™ and different 3D printing technologies e.g., fused deposition modeling, and selective laser sintering to allow the students experience the materials and equipment needed to create the same part using different types of equipment and different types of technology.more » « less
An official website of the United States government

Full Text Available