Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 28, 2025
-
ABSTRACT The dynamic spectra of pulsars frequently exhibit diverse interference patterns, often associated with parabolic arcs in the Fourier-transformed (secondary) spectra. Our approach differs from previous ones in two ways: first, we extend beyond the traditional Fresnel–Kirchhoff method by using the Green’s function of the Helmholtz equation, i.e. we consider spherical waves originating from three-dimensional space, not from a two-dimensional screen. Secondly, the discrete structures observed in the secondary spectrum result from discrete scatterer configurations, namely plasma concentrations in the interstellar medium, and not from the selection of points by the stationary phase approximation. Through advanced numerical techniques, we model both the dynamic and secondary spectra, providing a comprehensive framework that describes all components of the latter spectra in terms of physical quantities. Additionally, we provide a thorough analytical explanation of the secondary spectrum.more » « less
-
Within a tight-binding approximation, we numerically determine the time evolution of graphene electronic states in the presence of classically vibrating nuclei. There is no reliance on the Born–Oppenheimer approximation within the p-orbital tight-binding basis, although our approximation is “atomically adiabatic”: the basis p-orbitals are taken to follow nuclear positions. Our calculations show that the strict adiabatic Born–Oppenheimer approximation fails badly. We find that a diabatic (lazy electrons responding weakly to nuclear distortions) Born–Oppenheimer model provides a much more accurate picture and suggests a generalized many-body Bloch orbital-nuclear basis set for describing electron–phonon interactions in graphene.more » « less
-
This study analyzed the scar-like localization in the time-average of a time-evolving wavepacket on a desymmetrized stadium billiard. When a wavepacket is launched along the orbits, it emerges on classical unstable periodic orbits as a scar in stationary states. This localization along the periodic orbit is clarified through the semiclassical approximation. It essentially originates from the same mechanism of a scar in stationary states: piling up of the contribution from the classical actions of multiply repeated passes on a primitive periodic orbit. To achieve this, several states are required in the energy range determined by the initial wavepacket.more » « less