Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Therapeutic biomacromolecules are highly specific, which results in controlled therapeutic effect and less toxicity than small molecules. However, proteins and nucleic acids are large and have significant surface hydrophilicity and charge, thus cannot diffuse into cells. These chemical features render them poorly encapsulated by nanoparticles. Protein vesicles are self-assembling nanoparticles made by warming elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper and a globular protein fused to a glutamate-rich leucine zipper. To impart stimuli-responsive disassembly and small size, ELP was modified to include histidine and tyrosine residues. Additionally, hydrophobic ion pairing (HIP) was used to load and release protein and siRNA cargos requiring endosomal escape. HIP vesicles enabled delivery of cytochrome c, a cytosolically active protein, and significant reduction in viability in traditional two-dimensional (2D) human cancer cell line culture and a biomimetic three-dimensional (3D) organoid model of acute myeloid leukemia. They also delivered siRNA to knockdown protein expression in a murine fibroblast cell line. By examining uptake of positive and negatively charged fluorescent protein cargos loaded by HIP, this work revealed the necessity of HIP for cargo release and how HIP influences protein vesicle self-assembly using microscopy, small angle x-ray scattering, and nanoparticle tracking analysis. HIP protein vesicles have the potential to broaden the use of intracellular proteins for various diseases and extend protein vesicles to deliver other biomacromolecules.more » « less
- 
            The cadherin–catenin adhesion complex is the central component of the cell–cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•β-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and β-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of β-catenin forms a flexible “tongue” that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin–catenin adhesion complex in mechanotransduction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
