- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Priebe, Carey E (3)
-
Vogelstein, Joshua T (3)
-
Yang, Weiwei (3)
-
Dey, Jayanta (2)
-
Gao, Chenyu (2)
-
Geisa, Ali (2)
-
Helm, Hayden S (2)
-
Larson, Jonathan (2)
-
LeVine, Will (2)
-
Mehta, Ronak D (2)
-
Tomita, Tyler M (2)
-
Tower, Bryan (2)
-
Wang, Qingyang (2)
-
White, Christopher M (2)
-
Xu, Haoyin (2)
-
van_de_Ven, Gido M (2)
-
Helm, Hayden (1)
-
de_Silva, Ashwin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 30, 2026
-
Helm, Hayden; de_Silva, Ashwin; Vogelstein, Joshua T; Priebe, Carey E; Yang, Weiwei (, Mathematics)We propose and study a data-driven method that can interpolate between a classical and a modern approach to classification for a class of linear models. The class is the convex combinations of an average of the source task classifiers and a classifier trained on the limited data available for the target task. We derive the expected loss of an element in the class with respect to the target distribution for a specific generative model, propose a computable approximation of the loss, and demonstrate that the element of the proposed class that minimizes the approximated risk is able to exploit a natural bias–variance trade-off in task space in both simulated and real-data settings. We conclude by discussing further applications, limitations, and potential future research directions.more » « less
-
Vogelstein, Joshua T; Dey, Jayanta; Helm, Hayden S; LeVine, Will; Mehta, Ronak D; Tomita, Tyler M; Xu, Haoyin; Geisa, Ali; Wang, Qingyang; van_de_Ven, Gido M; et al (, IEEE Transactions on Pattern Analysis and Machine Intelligence)Free, publicly-accessible full text available November 1, 2026
An official website of the United States government
