Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Our urban systems and their underlying sub-systems are designed to deliver only a narrow set of human-centered services, with little or no accounting or understanding of how actions undercut the resilience of social-ecological-technological systems (SETS). Embracing a SETS resilience perspective creates opportunities for novel approaches to adaptation and transformation in complex environments. We: i) frame urban systems through a perspective shift from control to entanglement, ii) position SETS thinking as novel sensemaking to create repertoires of responses commensurate with environmental complexity (i.e., requisite complexity), and iii) describe modes of SETS sensemaking for urban system structures and functions as basic tenets to build requisite complexity. SETS sensemaking is an undertaking to reflexively bring sustained adaptation, anticipatory futures, loose-fit design, and co-governance into organizational decision-making and to help reimagine institutional structures and processes as entangled SETS.more » « less
-
As climate change is emerging as a major challenge for man-made systems in the coming century, there has been significant effort to understand how to position infrastructure to adapt and deliver services reliably. Particularly, the climate is changing faster than the expected lifetime of critical infrastructure, resulting in situations well beyond the intended design conditions of a stationary climate. This study assesses how well existing infrastructure design approaches – traditional fail-safe, armoring, low regret, safe-to-fail, and adaptive management – account for climate-related complexity and uncertainty through an application of the Cynefin and Deep Uncertainty Frameworks. The results indicate that existing infrastructure design approaches have varying levels of validity for addressing climate change across spatial and temporal scales. The most common infrastructure design approaches undertake lower levels of complexity and uncertainty than climate change demands, indicating the potential of approaches that address complexity and deep uncertainty have not been fully realized. KEYWORDS: Climate change, infrastructure, deep uncertainty, complexity, adaptationmore » « less
-
Abstract Infrastructure must be resilient to both known and unknown disturbances. In the past, resilient infrastructure design efforts have tended to focus on principles of robustness and recovery against projected failures. This framing has developed independently from resilience principles in biological and ecological systems. As such, there are open questions as to whether the approaches of natural systems that lead to adaptation and transformation are relevant to engineered systems. To improve engineered system resilience, infrastructure managers may benefit from considering and applying a set of “Life's Principles”—design principles and patterns drawn from the field of biomimicry. Nature has long withstood disturbances within and beyond previous experience. Infrastructure resilience theory and practice are assessed against Life's Principles identifying alignments, contradictions, contentions, and gaps. Resilient infrastructure theory, which emphasizes a need for flexible and agile infrastructure, aligns well with Life's Principles, addressing each principle and most sub‐principles (excluding “breakdown products into benign components” and “do chemistry in water”). Meanwhile, resilient infrastructure practice only occasionally aligns with Life's Principles and contradicts five out of six principles. As resilience theory advances, Life's Principles offer support in broadening how infrastructure managers approach resilience, and by using biomimicry, infrastructure managers can be better equipped to deploy resilience for complexity and uncertainty.more » « less