Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
North Atlantic Deep Water (NADW), the return flow component of the Atlantic Meridional Overturning Circulation (AMOC), is a major inter-hemispheric ocean water mass with strong climate effects but the evolution of its source components on million-year timescales is poorly known. Today, two major NADW components that flow southward over volcanic ridges to the east and west of Iceland are associated with distinct contourite drift systems that are forming off the coast of Greenland and on the eastern flank of the Reykjanes (mid-Atlantic) Ridge. Here we provide direct records of the early history of this drift sedimentation based on cores collected during International Ocean Discovery Programme (IODP) Expeditions 395C and 395. We find rapid acceleration of drift deposition linked to the eastern component of NADW, known as Iceland–Scotland Overflow Water at 3.6 million years ago (Ma). In contrast, the Denmark Strait Overflow Water feeding the western Eirik Drift has been persistent since the Late Miocene. These observations constrain the long-term evolution of the two NADW components, revealing their contrasting independent histories and allowing their links with climatic events such as Northern Hemisphere cooling at 3.6 Ma, to be assessed.more » « lessFree, publicly-accessible full text available May 5, 2026
-
Abstract The Antarctic ice sheet blankets >99% of the continent and limits our ability to study how subglacial geology and topography have evolved through time. Ice-rafted dropstones derived from the Antarctic subglacial continental interior at different times during the late Cenozoic provide valuable thermal history proxies to understand this geologic history. We applied multiple thermochronometers covering a range of closure temperatures (60–800 °C) to 10 dropstones collected during Integrated Ocean Drilling Program (IODP) Expedition 318 in order to explore the subglacial geology and thermal and exhumation history of the Wilkes Subglacial Basin. The Wilkes Subglacial Basin is a key target for study because ice-sheet models show it was an area of ice-sheet retreat that significantly contributed to sea-level rise during past warm periods. Depositional ages of dropstones range from early Oligocene to late Pleistocene and have zircon U-Pb or 40Ar/39Ar ages indicating sources from the Mertz shear zone, Adélie craton, Ferrar large igneous province, and Millen schist belt. Dropstones from the Mertz shear zone and Adélie craton experienced three cooling periods (1700–1500 Ma; 500–280 Ma; 34–0 Ma) and two periods of extremely slow cooling rates (1500–500 Ma; 280–34 Ma). Low-temperature thermochronometers from seven of the dropstones record cooling during the Paleozoic, potentially recording the Ross or Pan-African orogenies, and during the Mesozoic, potentially recording late Paleozoic to Mesozoic rifting. These dropstones then resided within ~500 m of the surface since the late Paleozoic and early Mesozoic. In contrast, two dropstones deposited during the mid-Pliocene, one from the Mertz shear zone and one from Adélie craton, show evidence for localized post-Eocene glacial erosion of ≥2 km.more » « less
-
Abstract Creeping faults are difficult to assess for seismic hazard because they may participate in rupture even though they likely cannot nucleate large earthquakes. The creeping central section of the San Andreas fault in California (USA) has not participated in a historical large earthquake; however, earthquake ruptures nucleating in the locked northern and southern sections may propagate through the creeping section. We used biomarker thermal maturity and K/Ar dating on samples from the San Andreas Fault Observatory at Depth to look for evidence of earthquakes. Biomarkers show evidence of many earthquakes with displacements >1.5 m in and near a 3.5-m-wide patch of the fault. We show that K/Ar ages decrease with thermal maturity, and partial resetting occurs during coseismic heating. Therefore, measured ages provide a maximum constraint on earthquake age, and the youngest earthquakes here are younger than 3 Ma. Our results demonstrate that creeping faults may host large earthquakes over longer time scales.more » « less
-
Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.more » « less
-
New field observations and 40 Ar/ 39 Ar geochronology reveal that the Topernawi Formation of the Ekitale Basin, northern Turkana Depression, Turkana County, Kenya was deposited entirely during the Oligocene between 29.7 ± 0.5 Ma and 29.24 ± 0.08 Ma. These bracketing ages are determined via new 40 Ar/ 39 Ar geochronology on a basaltic lava flow at the base of the section and a felsic ignimbrite near the top. A newly discovered basal unit and interbedded lava flow result in a new total sedimentary thickness of 92 m. The Topernawi Formation is the oldest dated syn-rift sedimentary section in the northern Turkana Depression.more » « less
-
null (Ed.)Abstract In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations.more » « less