We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract cm$$2.12\times 10^{35}$$ s$$^{-2}\cdot $$ ($$^{-1}$$ times the luminosity achieved by OLYMPUS). The proposed two-photon exchange experiment (TPEX) entails a commissioning run at a beam energy of 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to$$\approx 200$$ (GeV/$$Q^2=4.6$$ c ) (twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations.$$^2$$ -
Abstract A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino–nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino–nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
-
We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding toprotons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produceandmesons, which could decay into dark-matter (DM) particles mediated via a dark photon. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameteras a function of the dark-photon mass in the range. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particlesfor two benchmark models with mass ratiosand 2 and for dark fine-structure constants.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
Free, publicly-accessible full text available April 1, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available January 22, 2025