- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hench, Kosmas (2)
-
Amos, William (1)
-
Barrett, Brendan J. (1)
-
Bonin, Carolina A (1)
-
Chen, Rebecca S (1)
-
Crofoot, Margaret C. (1)
-
Dasmahapatra, Kanchon K (1)
-
Finerty, Genevieve (1)
-
Goebel, Mike E (1)
-
Gulland, Frances_M D (1)
-
Hoffman, Joseph I (1)
-
Jacobson, Odd T. (1)
-
Kalinowski, Jörn (1)
-
Kardos, Marty (1)
-
Köhrer, Karl (1)
-
Perry, Susan (1)
-
Rickert, Daniel (1)
-
Stoffel, Martin A (1)
-
Vendrami, David_L J (1)
-
Wachtmeister, Thorsten (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the genetic and fitness consequences of anthropogenic bottlenecks is crucial for biodiversity conservation. However, studies of bottlenecked populations combining genomic approaches with fitness data are rare. Theory predicts that severe bottlenecks deplete genetic diversity, exacerbate inbreeding depression and decrease population viability. However, actual outcomes are complex and depend on how a species’ unique demography affects its genetic load. We used population genetic and veterinary pathology data, demographic modelling, whole-genome resequencing and forward genetic simulations to investigate the genomic and fitness consequences of a near-extinction event in the northern elephant seal. We found no evidence of inbreeding depression within the contemporary population for key fitness components, including body mass, blubber thickness and susceptibility to parasites and disease. However, we detected a genomic signature of a recent extreme bottleneck (effective population size = 6; 95% confidence interval = 5.0–7.5) that will have purged much of the genetic load, potentially leading to the lack of observed inbreeding depression in our study. Our results further suggest that deleterious genetic variation strongly impacted the post-bottleneck population dynamics of the northern elephant seal. Our study provides comprehensive empirical insights into the intricate dynamics underlying species-specific responses to anthropogenic bottlenecks.more » « less
-
Jacobson, Odd T.; Crofoot, Margaret C.; Perry, Susan; Hench, Kosmas; Barrett, Brendan J.; Finerty, Genevieve (, International Journal of Primatology)Abstract Understanding the amount of space required by animals to fulfill their biological needs is essential for comprehending their behavior, their ecological role within their community, and for effective conservation planning and resource management. The space-use patterns of habituated primates often are studied by using handheld GPS devices, which provide detailed movement information that can link patterns of ranging and space-use to the behavioral decisions that generate these patterns. However, these data may not accurately represent an animal’s total movements, posing challenges when the desired inference is at the home range scale. To address this problem, we used a 13-year dataset from 11 groups of white-faced capuchins (Cebus capucinus imitator) to examine the impact of sampling elements, such as sample size, regularity, and temporal coverage, on home range estimation accuracy. We found that accurate home range estimation is feasible with relatively small absolute sample sizes and irregular sampling, as long as the data are collected over extended time periods. Also, concentrated sampling can lead to bias and overconfidence due to uncaptured variations in space use and underlying movement behaviors. Sampling protocols relying on handheld GPS for home range estimation are improved by maximizing independent location data distributed across time periods much longer than the target species’ home range crossing timescale.more » « less
An official website of the United States government
